
Supplementary Materials for
Anatomical Invariance Modeling and Semantic Alignment for Self-supervised

Learning in 3D Medical Image Analysis

Yankai Jiang1,3*, Mingze Sun1,4*, Heng Guo1,2, Xiaoyu Bai1, Ke Yan1,2, Le Lu1 and Minfeng Xu1,2B

1DAMO Academy, Alibaba Group
2Hupan Lab

3College of Computer Science and Technology, Zhejiang University
4Tsinghua Shenzhen International Graduate School, Tsinghua-Berkeley Shenzhen Institute, China

Beric.xmf@alibaba-inc.com

A. Implementation Details

A.1. Preprocessing pipeline for pre-training dataset

The FLARE 2022 dataset is collected from more than
20 medical groups under the license permission, including
MSD [16], KiTS [9], AbdomenCT-1K [13], and TCIA [5].
It provides a training set including 2000 unlabelled CT
scans with liver, kidney, spleen, or pancreas diseases. We
split 10% of the unlabelled CT scans for validation in the
pre-training stage, and thus the number of training and val-
idation volumes are 1800 and 200, respectively. Alice is
pre-trained using only unlabelled images (any annotations
were not utilized). First, we clip the CT image intensities
from −125 to 255, and then normalize them to the range of
0 to 1. We adopt SAM [20] to locate aligned body parts.
The results of landmarks on query and key volumes aligned
by SAM are shown in Fig. 5 and Fig. 6. We use a default
input volume crop size of 192×192×64 to generate respec-
tive views of consistent anatomies according to the aligned
landmarks on each query and key volume pair. In this way,
Alice is pre-trained via a diverse set of human body com-
positions, and learns a general-purpose representation from
different medical groups’ data that can be leveraged for a
wide range of downstream tasks.

A.2. End-to-end fine-tuning settings for down-
stream datasets

We apply our pre-trained online encoder weights to vari-
ous ViT-based segmentation networks designed for medical
tasks of UNETR, nnFormer, and Swin UNETR, by follow-
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ing most of their settings. The detail settings are shown in
Tab. 8.

B. Results on Downstream Tasks
In this section, we show more results on 3D classification

downstream task.

B.1. Dataset

We conduct experiments on a public benchmark
MosMedData: Chest CT Scans with COVID-19 Related
Findings [14]. This dataset consists of lung CT scans with
COVID-19 related findings, as well as without such find-
ings. We use the associated radiological findings of the CT
scans as labels and formulate this task as a 2 classes classifi-
cation to predict presence of viral pneumonia. This dataset
contains a total of 1110 CTs. We randomly split 70% of the
dataset for training, 10% for validation and the rest 20% for
testing. We adopt the ten-fold cross-validation method.

B.2. Preprocessing pipeline

We first rotate the CT volumes by 90 degrees to fix the
orientation. We adopt a threshold between −1000 and 400
to clip the CT intensities, and then normalize the Hounsfield
units (HU) values to be between 0 and 1. All volumes are
resized to 128× 128× 64. We use the online data augmen-
tation, including random rotation, scaling, flipping, adding
white Gaussian noise, Gaussian blurring, adjusting right-
ness and contrast, simulation of low resolution.

B.3. Setup

To perform classification, we extract the pretrained on-
line encoder and appended a FC layer with the output chan-



Config FLARE 2022 BTCV

UNETR Swin UNETR nnFormer nnFormer
optimizer AdamW AdamW SGD SGD
base learning rate 1e−4 4e−4 0.01 0.01
weight decay 1e−5 1e−5 3e−5 3e−5

optimizer momentum 0.9 0.9 0.99 0.99
batch size 8 8 8 8
learning rate schedule cosine decay cosine decay “poly” decay “poly” decay
warmup epochs 50 50 40 40
training epochs 1000 1000 1000 1000
augmentation random flip, rotation, intensities shifting random flip, rotation, intensities shifting scaling, gaussian blur, mirroring scaling, gaussian blur, mirroring
Spacing 0.76× 0.76× 1.5 0.76× 0.76× 1.5 0.76× 0.76× 1.5 0.76× 0.76× 2
Crop size 96× 96× 96 96× 96× 96 128× 128× 96 128× 128× 96

Table 8. End-to-end fine-tuning settings for FLARE 2022 and BTCV datasets.

Method Backbone COVID-19
20% 50% 100%

Rand. init.

3D ResNet

73.55±9.33 76.64±7.11 84.73±5.13
MoCo v2 [3] 76.73±9.16 77.94±7.03 85.86±4.92
BYOL [6] 76.69±9.20 77.88±7.15 85.74±5.04
ContrastiveCrop [15] 78.65±8.36 80.61±6.28 87.02±3.11
LoGo [21] 78.60±8.82 80.53±6.75 86.95±3.59
PCRL [23] 79.44±8.44 81.17±6.21 87.31±2.88
PGL [19] 76.77±9.09 78.02±6.93 86.08±4.72
DiRA [7] 78.06±9.04 79.15±6.86 87.43±3.55
Rand. init.

ViT-B

72.80±9.25 76.76±6.90 85.05±4.94
MoCo v3 [4] 77.62±9.17 78.91±6.62 86.32±4.66
DINO [2] 78.49±8.77 80.33±6.28 86.87±4.35
IBOT [24] 79.53±8.05 81.42±5.53 87.55±3.63
SIM [18] 79.85±7.87 81.60±5.05 87.67±2.95
MAE [8] 78.25±8.02 79.78±6.84 86.62±3.27
SemMAE [11] 78.57±7.60 80.47±5.67 86.94±3.44
CMAE [10] 80.05±7.08 81.65±4.92 87.73±3.02
Tang et al. [17] 79.59±7.59 81.52±5.05 87.70±3.07
Alice 83.30±6.04 85.23±3.91 90.88±1.29
Table 9. Classification performance of using different pre-training
strategies on the COVID19 screening test set. CNN-based SSL
methods take the 3D ResNet as their encoder backbone. ViT-based
SSL methods take the ViT-B as their encoder backbone. We adopt
three label settings (using 20%, 50%, and 100% labeled training
data).

nel as the number of classes for prediction. We train the
classification model using the AdamW optimizer with a
warm-up cosine scheduler of 400 iterations. We use a batch-
size of 8 per GPU, an initial learning rate of 5e−5, a momen-
tum of 0.9 and a decay of 1e−5 for 10K iterations. We uti-
lize the cross entropy loss. The classification performance
is measured by the area under the receiver operator curve
(AUC).

B.4. Results

We compare Alice with the state-of-the-arts including
representative CNN-based SSL methods and ViT-based
SSL methods. The results are shown in Tab. 9. Alice
noticeably surpasses the other state-of-the-art SSL frame-
works. We show when using 20% of labeled training data,
Alice achieves approximately 11% improvement compar-
ing to training from scratch. When employing all labeled
training data, the self-supervised pre-training shows 5.83%
higher AUC. In practice, the AUC number 85.05 of learn-
ing from scratch with entire dataset can be achieved by us-

ing pre-trained weights from Alice with 50% training data,
which indicates that Alice can reduce the annotation effort
by at least 50% for this task.

Compared with the state-of-the-art CNN-based SSL
methods MoCov2, BYOL, PCRL, PGL and DiRA, Alice
outperforms them at least absolute 3.86% and 3.45% in
AUC when using 20% and 100% labeled training data,
respectively. Notably, Alice achieves much better results
than LoGo and ContrastiveCrop, which also design specific
strategies to generate semantic-aligned contrastive view
pairs. However, these two methods only operate within each
image independently and ignore the inter-volume consis-
tency. The superiority performance of Alice also reveals the
effectiveness of our anatomical semantic alignment strat-
egy.

Compared against strong ViT-based SSL methods, Alice
significantly outperforms them on all three label settings.
The performance gains over the second, third and fourth
top-ranked methods are 3.15%, 3.18%, 3.21% and 3.33%
on AUC when 100% labels are available. It proves the effec-
tiveness of modeling anatomical invariance and performing
semantic alignment to assist the SSL process. Besides, we
find that contrastive learning tends to benefit classification
task more than MIM, which is consist with many previous
studies [10, 18, 12]. Contrastive learning naturally endows
the pretained model with strong instance discriminability,
while MIM focuses more on learning local relations in in-
put image for fulfilling the reconstruction task [12]. We
also notice that the ViT-based methods tend to outperform
the CNN-based methods when the number of training data
scales up. It reflects that the Vision Transformer is a com-
petitive architecture and the SSL is vital for it to achieve
good performance.

C. Ablation Studies
We have conducted additional ablation experiments to

further validate the design choices we have made in Alice.

C.1. Masking for the target encoder

We investigate whether adopting random masking for the
target encoder affects the model performance. As shown



Query Volume 1 Key Volume 1 Query Volume 2 Key Volume 2
Figure 5. An example of anatomical location matching via SAM [20]. We randomly select an anatomical point in a query CT image,
and then use SAM to find its matched point in a key volume from another patient. The red points are selected points in query volume or
detected points in key volume.

Masking ratio DSC on FLARE 2022 DSC on BTCV (offline)

0.75 84.45±2.63 84.30±1.66
0.5 85.22±2.44 85.06±1.35
0.25 86.01±2.27 85.94±1.27

0 86.87±1.84 86.76±0.98
Table 10. Experiment on whether adopting masking to the input of
target encoder. We test different masking ratio settings on FLARE
2022 dataset and BTCV dataset. The segmentation backbone is
nnFormer.

in Tab. 10, we observe that using the intact views yields the
best results on FLARE 2022 dataset and BTCV dataset. The
target encoder provides the online encoder with the con-
trastive supervision. If target encoder also takes random
masked input with degenerated semantic information, the
anatomical alignment process will be sub-optimal since the
teacher embedding from CASA module may hardly access
gloabl information from the original volume crop. Thus,
the target encoder in Alice uses the whole intact views as
inputs.

C.2. Efficacy of combining MIM and CL

We perform experiments on pre-training with different
combinations of self-supervised objectives to study the ef-

Method MIM ℓr Inter-Volume ℓdv Intra-Volume ℓst DSC on FLARE 2022

nnFormer baseline × × × 81.33±3.05
× ✓ × 83.17±2.82
✓ ✓ × 85.66±2.18
✓ × ✓ 85.63±2.11

Alice ✓ ✓ ✓ 86.87±1.84

Table 11. Ablation study of different combinations of self-
supervised objectives in Alice on FLARE 2022 benchmark. The
segmentation backbone is nnFormer.

fectiveness of MIM and contrastive learning. Tab. 11 shows
the results on FLARE 2022 test set. Overall, employing all
objectives achieves best Dice of 86.87%.

D. More explanations on the feature alignment
module

The feature alignment module (CASA) is the one contri-
bution of our paper. We have also thought about using tra-
ditional image registration methods (e.g. deformable many-
one registration) or some unsupervised learning-based med-
ical image registration methods [1, 22] for alignment. How-
ever, a large masking ratio would already erase many image
contents and make the masked view quite distinct from the
intact one. We found existing medical image registration
methods can not work well to solve this problem. Driven
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Figure 6. Random anatomy matching results of SAM [20]. We show different query and key crops.

by this limitation, we propose the CASA module to per-
form alignment in the feature space. “anatomical seman-
tic alignment” is not performing a registration task. So
the feature alignment module (CASA) in our Alice is not
trying to match masked images to full images. It aims
to extract aligned features (most correlated) from masked
views and augmented views. This module is essentially
a self-attention based feature extractor, not a registration
algorithm. We compared our module with SIM [18] and
CMAE [10] which adopt a specific decoder to generate
aligned features. Our method outperforms these two meth-
ods in all tasks.

E. BTCV Quantitative Comparisons

In this section, we provide the quantitative comparisons
on BTCV offline test set. Note that the ground truth labels
of online test set are not accessible. As shown in Fig. 7,
Alice successfully identifies all organs with high accuracy
while it is easy to see that Swin UNETR and nnU-Net pro-
duce some under-segmentation and over-segmentation er-
rors. Moreover, as can be seen from the comparison results
in the last row of Fig. 7, Swin UNETR and nnU-Net mis-
classify the spleen (red) as liver (pink) while Alice makes
the right organ classification. Such superiority of Alice
owes to the effectiveness of modeling anatomical invari-
ance.



nnU-NetSwin UNETRInput Image Alice Ground Truth

Figure 7. Qualitative visualizations on BTCV offline test set. We compare Alice with state-off-the-art segmentation methods, namely Swin
UNETR and nnU-Net. The segmentation backbone for Alice is nnFormer.

References
[1] Guha Balakrishnan, Amy Zhao, Mert R Sabuncu, John Gut-

tag, and Adrian V Dalca. An unsupervised learning model
for deformable medical image registration. In Proceedings of
the IEEE conference on computer vision and pattern recog-
nition, pages 9252–9260, 2018. 3

[2] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,
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