
Supplementary Material: Efficient Decision-based Black-box Patch Attacks on
Video Recognition

1. Overview
In this supplementary material, we provide more details

of STDE, organized as follows:
In Section 2, we provide further details about the popu-

lation initialization algorithm.
In Section 3, we further analyze all hyper-parameters in

STDE.
In Section 4, we provide more implementation details of

TPA [8], Patch-Rs [3], AdvW [5], and BSCA [2].
In Section 5, we show more visualizations of our method

compared with other SOTA methods for untargeted attacks
and targeted attacks respectively.

In Section 6, we provide more analysis about the com-
plexity of time and space between STDE and BSCA.

2. Population Initialization Algorithm
We provide the pseudo-code for population initialization

in Algorithm 1, where rand(a, b, c) means randomly sam-
pling c integers in [a, b), and c defaults to 1. Population ini-
tialization aims to generate N populations that correspond
to generated adversarial examples can mislead the video
recognition model. For definitions of specific formulas and
symbols, please see Section 3.3 of the main body.

3. Hyper-parameters Tuning
We randomly select one video from each category on the

UCF-101 test set, which does not overlap with the videos
in Table 1 of the main body. We select C3D as the threat
model.

3.1. Population Size N

Table 1 shows the effect of different population sizes N .
As the population size N gets larger, the FR remains at
100% with smaller AOA but larger AQN. To balance per-
formance and efficiency, we choose N = 15.

3.2. Initialization Rate µ and Frame Coverage Rate
cf

The µ parameter constrains the area of patch initializa-
tion on each frame in the spatial domain, and cf constrains

Algorithm 1 Population Initialization (Population init)
Input: video recognition model F (·), clean video x, ground
truth y, target video xtar, target video label ytar
Parameter: population size N , initialization rate µ, frame
coverage rate cf
Output: V,G, q

1: V = ∅, G = ∞, q = 0.
2: for i ∈ [1, N ] do
3: cnt = 0, hl = H × µ,wl = W × µ.
4: while True do
5: P = ∅,M = 0.
6: FK = rand(0, 1, T ), s.t. sum(FK)/T = cf .
7: for t ∈ [0, T ) do
8: p(0) = rand(0, hl), p

(1) = rand(0, wl).
9: p(2) = rand(H − hl, H).

10: p(3) = rand(W − wl,W ).
11: P = P ∪ p.
12: M (t)(p(0) : p(2), p(1) : p(3)) = FK(t).
13: end for
14: Get xadv using Eq. 3 with x, xtar,M .
15: Calculate g(xadv) using Eq. 4.
16: cnt = cnt+ 1.
17: if g(xadv) < Gi then
18: Gi = g(xadv), V = V ∪ (P, FK).
19: break
20: end if
21: if cnt > 10 then
22: hl = wl = 1.
23: end if
24: if cnt > 11 then
25: cf = 1.
26: end if
27: end while
28: q = q + cnt.
29: end for
30: return V,G, q

the distribution of patches across the video in the temporal
domain. According to Algorithm 1, the larger µ is and the
smaller cf is, the smaller the area of the initialized gener-
ated populations corresponding to the generated adversarial



N
Untargeted Attack Targeted Attack

FR(%) AOA(%) AOA*(%) AQN FR(%) AOA(%) AOA*(%) AQN

5 100 4.86 2.07 2650 100 22.00 8.99 2640
10 100 4.47 1.87 2660 100 21.10 8.70 2770
15 100 4.23 1.73 2740 100 20.80 8.51 2700
20 100 4.14 1.71 2730 100 20.20 8.22 3870
30 100 4.06 1.69 2990 100 19.80 8.06 4850

Table 1. Hyper-parameters tuning on population size N .

example patches, which means that the starting optimiza-
tion point is closer to the global optimum. However, this
also leads a larger query consumption for population initial-
ization. Table 2 and Table 3 show the performance results
for different values of µ and cf respectively. Considering
the query efficiency and attack performance, for untargeted
attacks, we choose µ = 0.4, cf = 0.6, for targeted attacks,
we choose µ = 0.4, cf = 0.7.

µ
Untargeted Attack Targeted Attack

FR(%) AOA(%) A0A*(%) AQN FR(%) AOA(%) AOA*(%) AQN

0.05 100 5.33 2.16 2660 100 21.90 8.86 2810
0.10 100 4.88 2.04 2560 100 21.40 8.74 2810
0.15 100 4.43 1.87 2640 100 21.80 8.80 2730
0.20 100 4.52 1.84 2790 100 21.70 8.80 2840
0.25 100 3.91 1.63 2780 100 20.70 8.46 2780
0.30 100 4.51 1.88 2690 100 20.80 8.47 2780
0.35 100 4.23 1.73 2740 100 20.80 8.51 2700
0.40 100 3.89 1.59 2750 100 20.70 8.42 2730

Table 2. Hyper-parameters tuning on initialization rate µ

cf
Untargeted Attack Targeted Attack

FR(%) AOA(%) AOA(%)* AQN FR(%) AOA(%) AOA*(%) AQN

Random 100 4.28 1.84 2810 100 21.70 8.77 2760
0.4 100 4.08 1.67 2730 100 21.40 8.75 2750
0.5 100 3.93 1.61 2750 100 21.20 8.60 2800
0.6 100 3.81 1.55 2740 100 21.20 8.60 2710
0.7 100 3.89 1.59 2750 100 20.70 8.42 2730
0.8 100 4.01 1.68 2700 100 21.10 8.53 2770
0.9 100 4.14 1.68 2760 100 20.70 8.40 2840
1.0 100 3.91 1.59 2758 100 21.70 8.77 2790

Table 3. Hyper-parameters tuning on frame coverage rate cf .
Random denotes no constrains for FK.

3.3. Mutation Rate γ and Crossover Rate α

Mutation rate γ and crossover rate α increase the diver-
sity of populations in sparsity and temporal domains respec-
tively. Table 4 shows the effect of different mutation rates
γ on attack performance. Table 5 shows the effect of differ-
ent crossover rates α on attack performance. For the untar-
geted attack, we both choose the smallest values of γ and
α: γ = 1, α = 1, which means more complex variants
can inhibit performance for the untargeted attack. For the
targeted attack, we choose γ = 1, α = 2, which balances
attack performance and query budgets.

3.4. It module and Lambda λ

The video model makes the final action recognition
based on the intra-frame spatial semantic information and

γ
Untargeted Attack Targeted Attack

FR(%) AOA(%) AOA*(%) AQN FR(%) AOA(%) AOA*(%) AQN

1 100 3.89 1.59 2750 100 20.70 8.42 2730
2 100 5.01 2.20 2690 100 24.50 9.920 2380
3 100 5.09 2.17 3140 100 24.30 10.20 2960
4 100 5.83 2.67 2830 100 26.20 11.00 2730

Table 4. Hyper-parameters tuning on mutation rate γ.

α
Untargeted Attack Targeted Attack

FR(%) AOA(%) AOA*(%) AQN FR(%) AOA(%) AOA*(%) AQN

1 100 3.58 1.47 2720 100 22.40 9.03 2790
2 100 3.89 1.59 2750 100 20.70 8.42 2730
3 100 4.35 1.78 2730 100 20.60 8.44 2950
4 100 4.40 1.77 2740 100 21.70 8.86 2750

Table 5. Hyper-parameters tuning on crossover rate α.

frame-to-frame temporal semantic information. Based on
the analysis of the targeted patch attacks in Section 4.6 of
the main body, it is clear that adversarial patches achieve
targeted attacks by transferring the model’s attention to
patches. From the attacker’s point of view, if the patches
have more temporal-domain semantic information for the
same patch area, then the attack performance can be fur-
ther improved. Therefore, we introduce the It module
in the fitness function to add more temporal-domain se-
mantic information of patches. Specifically, we suggest
that patches with larger temporal-domain intersections have
more temporal-domain semantic information. We first de-
fine a temporal-domain weighted intersection matrix W as
follows:

W =


T−1∑
t=0

M (t)(i, j), if
T−1∑
t=0

M (t)(i, j) > 1,

0, otherwise,
(1)

where
T−1∑
t=0

M (t)(i, j) denotes the cumulative number of pix-

els that patch at position (i, j) in all frames. W (i, j) > 1
means the position (i, j) belongs to temporal-domain in-
tersection, and the number of intersections is used as the
weight. The remaining positions are set to 0. Then, It is the
cumulative sum of W .

Table 6 shows the effect of different λ on attack perfor-
mance. The role of λ is to adjust the weight of different
parts in the fitness function g(·). We find that for the untar-
geted attack, the contribution of It is not obvious, but for the
targeted attack, as we expected, It can significantly improve
the attack performance. Due to the trade-off of the targeted
attack and untargeted attack, we choose λ = 1.0.

4. Implementation Details
We only set the hyper-parameters related to patch area

and maximum allowed query number in each method, and
the other parameters are the default values set. Follow-



λ
Untargeted Attack Targeted Attack

FR(%) AOA(%) AOA*(%) AQN FR(%) AOA(%) AOA*(%) AQN

0 100 3.58 1.47 2780 100 21.50 8.70 2780
0.5 100 3.68 1.58 2780 100 20.80 8.47 2770
1.0 100 3.58 1.47 2720 100 20.70 8.42 2730
1.5 100 4.16 1.74 2750 100 21.40 8.65 2700
2.0 100 4.21 1.74 2740 100 22.10 8.94 2730

Table 6. Hyper-parameters tuning on lambda λ.

ing [8], we set maximum allowed query number to 10,000
for untargeted attacks and 50,000 for targeted attacks. For
patch area, we ensure that the patch area of other methods
is not less than the corresponding patch area of our STDE.

4.1. TPA

We set n occlu and TPA N agents to 1. For untar-
geted attacks, we set rl batch = 400, steps = 25. For tar-
geted attacks, we set rl batch = 1000, steps = 50. Table 7
shows the values of area occlu on each dataset and model,
where area occlu denotes the percentage (%) occluded by
patches in total video area.

Model UCF-101 Kinetics-400

Untargeted Targeted Untargeted Targeted

C3D 5.00 25.00 4.00 37.00
NL 2.00 14.00 4.00 19.00

TPN 4.00 14.00 7.00 22.00

Table 7. area occlu in TPA on each dataset and model.

4.2. Patch-Rs

For untargeted attacks, we set n queries = 10, 000.
For targeted attacks, we set n queries = 50, 000. Table 8
shows k values on each dataset and model, where k denotes
the number of pixels in the patch area on every frame.

Model UCF-101 Kinetics-400

Untargeted Targeted Untargeted Targeted

C3D 752 3136 502 4641
NL 1003 8530 2007 9031

TPN 2509 6523 3512 11540

Table 8. k in Patch-Rs on each dataset and model.

4.3. AdvW

We set np=50, F=0, CR=0.9, generation=7, len x = 3 to
ensure that the maximum allowed query number is 10,000.
For the area of watermark, sl in AdvW denotes the scale
between the watermark and the frame. On UCF-101 [6],
values of sl for C3D [4], NL [7], and TPN [9] are 4.48,
7.22, 5.00 respectively, while on Kinetics-400 [1], values of
sl are 5.77, 5.77, 3.77 respectively.

4.4. BSCA

For controlling the area of bullet screens, we set the font
type is DejaV uSerif , the font of height is 9. On UCF-
101, the numbers of BSC for C3D, NL, and TPN are 3,
6, 6 respectively, while on Kinetics-400, the numbers of
BSC are 3, 6, 12 respectively. For controlling queries,
we set rl batch = 20, rl step = 500 on C3D model and
rl batch = 100, rl step = 100 on NL and TPN models.

5. More Visualizations
In this section, we provide more visualizations of our

STDE with other state-of-the-art methods for untargeted at-
tacks in Figure 1 and targeted attacks in Figure 2.

6. Analysis of Complexity
Space Complexity. BSCA adopts the reinforcement

learning framework of TPA and generates rl step parallel
replicas for each clean video, which are then inputted into
the video model. In contrast, our method only requires the
input of a single newly generated adversarial video to com-
pute fitness in the video model. As a result, the space com-
plexity of BSCA and STDE is O(n) and O(1) respectively.

Time Complexity. The time complexity is mainly re-
lated to the number of queries and the time required to gen-
erate adversarial videos. Although BSCA adopts a space-
time trade-off strategy by parallelizing the input queries,
adding subtitles to the video requires traversing every video
in rl step, every frame of the video, and every bullet
screens on each frame. Therefore, the time complexity of
BSCA is O(m × T × Q), where m denotes the number of
bullet screens. In contrast, our method quickly generates
adversarial videos using Eq. 3 in the main body, resulting
in a time complexity of O(T ×Q).
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TPA                                                                                      Predicted Label:  CricketBowling
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Patch Rs                                                                              Predicted Label:  CricketBowling
Bowling

AdvW                                                                                  Predicted Label:  BlowDryHair
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Clean Video                                                                Predicted Label:  Basketball

Target Video                                                               Predicted Label:  BoxingPunchingBag

TPA                                                                             Predicted Label:  BoxingPunchingBag

Patch Rs                                                                     Predicted Label:  Basketball

Ours                                                                            Predicted Label:  BoxingPunchingBag

Figure 2. We visualize our method compared with TPA, Patch-Rs on UCF-101 dataset for targeted attacks against C3D model. Among
them, only TPA and Ours achieve successful targeted attacks. Compared with other methods, our method has smaller patch area.


