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1. CVD Simulation

Based on the two-stage theory, this paper adopted a
two-stage model to simulate the CVD gamut proposed by
Machado [4]. Take the ∆λ as the offset distance, spectral
curves of L-, M- and S-cone of CVD can be indicated as
follows in the first stage:

La(λ) = L(λ+∆λL) (1)
Ma(λ) = M(λ+∆λM ) (2)
Sa(λ) = S(λ+∆λS) (3)

Then, in the second stage, the corresponding signals will be
processed by the transformation matrix TLMS2Opp [2] into
the opponent-color space as follows:
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where pa, da, and ta represent the protan, deutan, and tri-
tan deficiency; WS, YB and RG denote the channels of
opponent-color space: white-black, yellow-blue, and red-
green, respectively. By projecting the spectral power distri-
bution φR(λ), φG(λ), and φB(λ) of the RGB primaries, a
transformation from RGB color space to the opponent-color

space can be obtained as:

WSR = ρWS
∫
φR(λ)WS(λ)dλ,

WSG = ρWS
∫
φG(λ)WS(λ)dλ,

WSB = ρWS
∫
φB(λ)WS(λ)dλ,

YBR = ρYB
∫
φR(λ)YB(λ)dλ,

YBR = ρYB
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RGR = ρRG
∫
φR(λ)RG(λ)dλ,

RGR = ρRG
∫
φG(λ)RG(λ)dλ,

RGR = ρRG
∫
φB(λ)RG(λ)dλ,

(7)

where ρWS, ρYB, and ρRG are normalization factors, ensur-
ing that

WSR + WSG + WSB = 1

YBR + YBG + YBB = 1

RGR + RGG + RGB = 1

(8)

Therefore, the transformation matrix can be concluded as
a 3 × 3 matrix Γδs, where δs denotes the degree of CVD
based on the ∆λ:

Γδs =

WSR WSG WSB

YBR YBG YBB

RGR RGG RGB

 (9)

In summary, the general transformation from RGB color
space to opponent-color space for CVD can be defined as
a 3 × 3 matrix Γδs. Let Γ be the transformation matrix for
normal viewers, then the CVD simulation of an RGB image
can be defined as:Rsim

Gsim

Bsim

 = Γ−1Γδs

RG
B
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2. Network Structure
The generator of CVD-GAN can be summarized as Ta-

ble 1, where convolution layers and modulated layers are
adopted from StyleGAN-ada [3]. The structure of the dis-
criminator follows the StyleGAN-ada [3].



Generator

16 × 16 × 128 Learnable Constant
3 × 3 Deconv. ReLU
3 × 3 ModuConv. ReLU, Latents 4
3 × 3 Conv. ReLU
3 × 3 Conv. ReLU
3 × 3 Conv. + Noise ReLU
3 × 3 Conv. + Noise ReLU
3 × 3 Deconv. ReLU
3 × 3 ModuConv. ReLU, Latents 4
3 × 3 Conv. ReLU
3 × 3 Conv. ReLU
3 × 3 Conv. + Noise ReLU
3 × 3 Conv. + Noise ReLU
3 × 3 Deconv. ReLU
3 × 3 ModuConv. ReLU, Latents 4
3 × 3 Conv. ReLU
3 × 3 Conv. ReLU
3 × 3 Conv. + Noise ReLU
3 × 3 Conv. + Noise ReLU
3 × 3 Deconv. ReLU
3 × 3 ModuConv. ReLU, Latents 4
3 × 3 Conv. ReLU
3 × 3 Conv. ReLU
3 × 3 Conv. + Noise ReLU
3 × 3 Conv. + Noise ReLU
256 × 256 × 3

Table 1. Generator of CVD-GAN

3. Triple-Latent Based Color Disentanglement
The triple-latent structure consists of a contrastive group

to disentangle the color representation and a control group
to ensure the personalized generation. Specifically, there are
two latent codes in the contrastive group in order to elimi-
nate the dominance of other dimensions zd̃

(
d̃ ∈ (1, D]

)
toward the color. To better evaluate the results of disentan-
glement, we assign zd̃ and z0 random values.

Fig. 1 shows the visualization results of random assign-
ments. For each group divided by the dotted line, the first
row presents the images generated from latent codes with
random zd̃, while the second row presents the ones gener-
ated from random z0. It is shown that the color distribution
in the image is maintained although changes in the zd̃, and it
will be modified significantly only when the changes in the
z0, which means the dominance of color representation has
been decoupled with zd̃. As a result, the z0 can dominate
the color pattern generation.

With the increment δs on the z0 during the latent traver-
sal, CVD-GAN can generate personalized images for CVD
populations with varying degrees.

Fig. 2, Fig. 3, and Fig. 4 present the results of personal-
ized generation with an increment of [0.05, 0.2, 0.4, 0.55,
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Figure 1. Examples of color representation disentanglement. For
each group divided by the dotted line, the first row presents the im-
ages generated from latent codes with random zd̃, while the second
row presents the ones generated from random z0.

0.7, 0.9, 1.0] on the z0 and their corresponding simulations.
The fewer the change in the image after simulation, the
more friendly it is to CVD populations since fewer potential
perception biases will occur. It is shown that for all degrees,
CVD-GAN can generate friendly images with little percep-
tion bias.

4. Image Quality Comparison
The essence of all the CVD loss including local con-

trast loss LLC and color information loss LCI is to limit
the color gamut of the generated images, which will cause
a negative impact on the quality of generation. This section
will further discuss the trade-off between CVD-friendliness
and image quality.

Table 2 shows that the image quality will reduce as the
increase of severity of CVD in general since the gamut
is more limited with a higher degree of CVD. Compared
to other traditional post-processing recolor methods, Our
method can generate comparable results regarding quality
on different datasets with varying CVD degrees. It is noted
that the default CVD type is protan in this table and these
experiments are conducted under 4800 images.
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Figure 2. Examples of personalized generation of the symbolic-painting dataset, where ”D” denotes deutan- and ”P” denotes protan-
simulation.

5. User Study

As of now, our user study is still ongoing, and we have
successfully recruited 17 CVD volunteers, covering a range
of ages from 20 to 54 years old. These participants are cat-
egorized into three levels: mild, medium, and severe, based
on the Hue 100 test. Each volunteer rates 18 randomly se-
lected images generated by three different methods: Style-
GAN (black box), StyleGAN + Zhu (green box), and our
CVD-GAN (blue box) using a Likert scale from 1 to 5. The
ratings are based on the clearness and comfort level of the
images, where a higher score indicates better results. The
current outcomes are as Fig. 5.

According to the p-values of the t-test, ours achieves

higher marks with statistical significance.
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Figure 3. Examples of personalized generation of the abstract-art dataset.
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Figure 4. Examples of personalized generation of the still-life and flower datasets.



Dataset Degree StyleGAN [3]
StyleGAN with

CVD-GAN (Ours)
Zhu et al. [8] Huang et al. [1]

Abstract Art [6]
0% 14.35 - - 17.73

40% - 16.68 - 18.27
100% - 23.44 16.86 19.58

Still-Life [7]
0% 18.96 - - 22.10

40% - 23.42 - 24.09
100% - 26.36 21.91 25.36

Symbolic-Painting [7]
0% 28.20 - - 31.66
40% - 29.26 - 28.37

100% - 30.55 28.76 28.01

Flowers [5]
0% 8.23 - - 18.93
40% - 12.48 - 19.15

100% - 18.73 20.64 20.13

Table 2. FID of images generated by StyleGAN, post-processing recolor methods, and proposed CVD-GAN under various datasets, where
the lower value indicates better image quality.
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Figure 5. Result of the user study. (a), (b), and (c) showcase the
ranking of populations with mild, medium, and severe CVD de-
grees, respectively. The notation F S. indicates the F statistics and
P V represents the statistical significance of the collected prefer-
ence results.


