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1. Formula details

1.1. heatmap-based representation

We define the uncalibrated 3D human pose estimation
problem in the main text:

min
X3D,y

E
[
proj(X3D, y)−X2D

]
(1)

When using heatmap-based representation of human
pose, it is assumed that X2D is the edge distribution of
X3D, and problem1 is transformed into:

min
y,X3D

N∑
i

∫
σi

∥∥∥∥∥x2D
i (σi)−

∫
proj(z,yi)=σi

x3D(z) dz

∥∥∥∥∥
2

dσi

(2)

where z denotes the body element in 3D space, σi de-
notes the area element of the ith camera plane, and proj(·)
denotes the projection function.

In order to make the problem2 solvable, X3D is trans-
formed into an expression for X2D and y, a process in
which we use approximations:

x3D(z) =
1

N

N∑
i

proj(z,yi)=σi

x2D
i (σi)

x2D
i (σi) = max

proj(z,yi)=σi

x3D(z)

(3)

Bringing in the equation 3 the detailed derivation pro-
ceeds as follows:
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min
y

N∑
i

∫
σi

∥∥∥∥∥x2D
i (σi) −

∫
proj(z,yi)=σi

x
3D

(z) dz

∥∥∥∥∥
2

dσi

⇔min
y

N∑
i

∑
σi

∥∥∥∥∥x2D
i (σi) −

∑
z∈{z|proj(z,yi)=σi}

(x3D(z))2∑
z x3D(z)

∥∥∥∥∥
2

x
2D
i (σi)


/

∑
σi

x
2D
i (σi)


⇔min

y

N∑
i

∑
σi

∥∥∥∥∥∥
∑

z∈{z|proj(z,yi)=σi}

x
3D

(z)
(
x
2D
i (σi) − x

3D
(z)

)∥∥∥∥∥∥
2

x
2D
i (σi)

⇔min
y

N∑
i

∑
σi

∑
z∈{z|proj(z,yi)=σi}

∥∥∥∥(x3D
(z)x

2D
i (σi)

)2 (
x
2D
i (σi) − x

3D
(z)

)∥∥∥∥
2

⇔min
y

N∑
i

∑
z

∥∥∥∥(x3D
(z)x

2D
i (σi)

)2 (
x
2D
i (σi) − x

3D
(z)

)∥∥∥∥
2

⇔min
y

N∑
i

∥∥∥∥∥∑
z

(
x
3D

(z)x
2D
i (σi)

)2 (
x
2D
i (σi) − x

3D
(z)

)∥∥∥∥∥
2

(4)

Thus, the problem is simplified to:

min
y

N∑
i

∥
∑
z

(
x3D(z)x2D

i (σi)
)2 (

x2D
i (σi)− x3D(z)

)
︸ ︷︷ ︸

fi(y)

∥2

(5)

1.2. point-based representation

When X2D and X3D use point-based representations,
the problem can be transformed into a nonlinear least
squares problem from the reprojection error with weights
as follows.

min
y,X3D

N∑
i

∥w2D
i ◦

(
π(F (x3D

i , y))− x2D
i

)
∥2 (6)

where π(·) denotes the linear transformation function
obtained from the camera intrinsics, F (·) denotes the pro-
jection function obtained from the camera extrinsics, and
∥ · ∥2 denotes the L2 norm.



First, we establish the constraint relationship between
y and X3D by projection and triangulation, and define
x2D = F (x3D, y), x3D = G(x2D, y) to simplify the prob-
lem. Then the above problem is transformed into:

min
y

N∑
i

∥w2D
i ◦

(
π
(
F (G(x2D

i , y), y)
)
− x2D

i

)︸ ︷︷ ︸
fi(y)

∥2

(7)

1.3. KL

t(y) is the impulse function defined at the ygt point. The
derivation of KL dispersion in train loss is as follows.

Lcam = DKL(z(y)∥p(y|X2D))

=

∫
z(y)

(
log z(y)− log p(y|X2D)

)
dy

=

∫
z(y) log z(y)dy −

∫
z(y) log

p(X2D|y)
E[p(X2D|y)]

dy

= const−
∫

z(y) log p(X2D|y)dy

+ logE
[
p(X2D|y)

] ∫
z(y)dy

= const− log p(X2D|ygt) + logE
[
p(X2D|y)

]
= const− 1

2

N∑
i

∥fi(ygt)∥2 + logE
[
p(X2D|y)

]
(8)


