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1. Formula details
1.1. heatmap-based representation

We define the uncalibrated 3D human pose estimation
problem in the main text:
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When using heatmap-based representation of human
pose, it is assumed that X 2P is the edge distribution of
X3P and proble is transformed into:
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where z denotes the body element in 3D space, o; de-
notes the area element of the ith camera plane, and proj(-)
denotes the projection function.

In order to make the proble solvable, X3P is trans-
formed into an expression for X2 and y, a process in
which we use approximations:

3P (o) — / 2*P(2) dz
proj(z,y;)=0;
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22P(o;) =  max  23P(2)

proj(z,yi)=0;

Bringing in the equation [3] the detailed derivation pro-
ceeds as follows:
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Thus, the problem is simplified to:

N
min Y[ 37 (2 ()23 (00)) " (w3 ()

fi(y)

—2°P(2)) ||z

5)
1.2. point-based representation

When X 2P and X3P use point-based representations,
the problem can be transformed into a nonlinear least
squares problem from the reprojection error with weights
as follows.
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where 7(-) denotes the linear transformation function
obtained from the camera intrinsics, F'(-) denotes the pro-
jection function obtained from the camera extrinsics, and
I - |2 denotes the L2 norm.
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First, we establish the constraint relationship between
y and X3P by projection and triangulation, and define
220 = F(23P y), 23P = G(2%P,y) to simplify the prob-
lem. Then the above problem is transformed into:
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1.3. KL

t(y) is the impulse function defined at the y,¢ point. The
derivation of KL dispersion in train loss is as follows.

Lcam = DKL(Z(y)Hp(y‘XQD))
= /Z(y) (log 2(y) — log p(y|X?P)) dy
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