Scenimefy: Learning to Craft Anime Scene via Semi-Supervised
Image-to-Image Translation

Supplementary Material

Yuxin Jiang® Liming Jiang*

Shuai Yang

Chen Change Loy**

S-Lab, Nanyang Technological University

{c200203, 1iming002, shuai.yang, ccloy}@ntu.edu.sg

Abstract

The document provides supplementary information that
is not elaborated on in our main paper due to the space
constraints: implementation details (Section A), additional
comparative results (Section B), loss variant study (Sec-
tion C), more results of Scenimefy (Section D), and potential
limitations (Section E). Code: https://github.com/
Yuxinn—-J/Scenimefy.

A. Implementation Details
A.1. Network Architecture

StyleGAN finetuing. For the StyleGAN2 finetuning im-
plementation, we modified the code based on FreezeG [2]
by incorporating a freezed style vector and low-resolution
layers of the generator. Only the last 3 generator blocks
were made trainable, each comprising 2 style blocks and
a ToRGB layer. To maintain global consistency using pre-
trained model priors, we utilized the VGG-19 [9] based per-
ceptual loss [11] to extract features of G (w) and G(w) up
to the conv4_4 layer. For the pre-trained CLIP [8] model,
the official version of ViT-B/32 was applied. For the patch-
wise contrastive loss, We selected 16 patches of 32 x 32 at
random locations from the images generated by Gs(w) and
G¢(w), followed by embedding the image patches using the
same CLIP encoder.

Semi-supervised image-to-image (I2I) translation. To
implement the semi-supervised 121 translation, we adopted
the official source code of [6] in a single-modal setting.
Our generator architecture is based on CUT [7], using
the ResNet-based generator [4] with 9 residual blocks for
training. It contains 2 downsampling blocks, 9 residual
blocks [4], and 2 upsampling blocks. A ResNet block is
a conv block with skip connections, including a convolu-
tion, normalization, ReLLU, convolution, normalization, and

* Equal contribution.

a residual connection. The downsampling and upsampling
blocks contain a two-stride convolution/deconvolution, nor-
malization, and ReLU. The full unsupervised branch is
mainly built upon [6].

To incorporate the supervised branch with our proposed
StylePatchNCE loss, we utilized the same PatchGAN dis-
criminator [5] architecture as our conditional discriminator,
classifying whether 70 x 70 overlapped patches are real or
fake.

Regarding the architecture of the generator and layers
used for the StylePatchNCE loss, we define the first half of
the generator G and a 2-layer MLP as an encoder, which
is represented as Gy and F'. To calculate our multi-layer
patch-wise contrastive style loss, we extract features from a
total of 5 layers of G, Which are RGB pixels, the first and
second downsampling convolution, and the first and the fifth
residual block, corresponding to layer ids 0,4,8,12, 16.
These layers correspond to receptive fields of sizes 1 x 1,
9 x 9,15 x 15,35 x 35, and 99 x 99. Following CUT, for
each layer’s features, we sampled 256 patches from random
locations and applied F' to obtain 256-dimensional final fea-
tures.

A.2. More Details on Data Selection and Training

We presented most of the data selection and model train-
ing details in our main paper. Below we show some addi-
tional details.

Semantic segmentation guided data selection. To fil-
ter the data, the Mask2Former [3] semantic segmentation
model with Swin-B (IN21k) as the backbone and pre-
trained on the ADE20K [12] dataset was utilized.

More training details. The training of our semi-supervised
121 translation model uses a single NVIDIA GeForce RTX
3090 GPU and a batch size of one. At each iteration,
the generator G forwards twice, generating both G(x) and
G(zP). After calculating the total loss, backpropagation
is performed once. The conditional discriminator Dp is
trained to distinguish between the concatenated {(y?,2?)}

https://github.com/Yuxinn-J/Scenimefy
https://github.com/Yuxinn-J/Scenimefy

and {(G(zP),zP)}. During training, the model consumes
approximately 5k MiB memory. In terms of the inference
speed, the rate is tested as 0.027 second per image, achiev-
ing real-time anime-style rendering.

B. Additional Comparative Results

More visual comparisons. In Section 4.2 of the main
paper, we compared our methods with five state-of-the-art
methods. Due to space limit, four groups of examples were
presented. In Figures 3, 4 and 5, we provide additional
comparative results to further demonstrate the exceptional
performance of our approach. All the previous baselines
generate inferior results than our method in terms of evi-
dent stylization, consistent semantic preservation, and fine-
detailed anime textures. Scenimefy achieves a more faithful
anime stylization with richer colors and stronger artistic ex-
pression, resulting in the best quality output.

C. Loss Variant Study

As mentioned in Section 3.3.1 of the main paper, we
introduce a novel patch-wise contrastive style loss, i.e.,
StylePatchNCE, instead of the strict reconstruction loss [5]
used in typical supervised 121 translation frameworks. We
have ablated the proposed StylePatchNCE loss in Section
4.3 of the main paper to show its usefulness. To further ver-
ify its effectiveness, here we directly replace the StylePatch-
NCE loss with the standard L, reconstruction loss as a vari-
ant for a more comprehensive comparison.

The qualitative results are presented in Figure 1. The
L4 loss variant resulted in an unnatural color and learned
poor local anime textures, such as the clouds (in Figure 1(b),
Row 2) and the stones (in Figure 1(b), Row 3). In contrast,
our method successfully translated both the global anime
style and local anime textures.

D. More Examples Generated by Scenimefy
D.1. Additional Results on Scene Stylization

We present more generated images (in Figures 6 and 7)
by Scenimefy. Thanks to the fully convolutional neural net-
work, our model can produce high-quality rectangular im-
ages despite being trained on squared images with a resolu-
tion of 256x256.

D.2. Generalizability to Other Cases

When we directly apply our model trained on natural
scene landscapes [10], we find that it performs relatively
well even in some other cases. The content of the test data
includes city views, architecture, portraits, animals, plants,
food, and other objects from the DIV2K [1] dataset. Over-
all, the results (see Figures 8, 9 and 10) demonstrate that our
method can generate high-quality anime stylized images in

(a) Source (b) Ly (€) Lstytepatchnce
Figure 1: Effects of the loss function variants for the su-
pervised branch. We compare the effects of the L; loss

with Lg¢yie PatcnNe E 10ss applied to pseudo paired data.

Figure 2: Certain failure cases. Top: the relatively poor
preservation of the tiny text-like details; Bottom: the incor-
rect semantic translation in a small number of cases.

other diverse use cases and real-world scenes, indicating its
certain generalizability.

E. Limitations

Despite the promising results, our method also has cer-
tain limitations. Due to the absence of strong constraints
imposed between the output image and the source image,
our model fails to preserve intricate tiny details, such as
text, as depicted in Figure 2 (Top). However, this limitation
may be overcome by introducing a simple content loss, such
as the reconstruction loss or perceptual loss. This encour-
ages the model to preserve the content of the source image
more closely, albeit at the cost of slightly compromising the

anime-style effect.

Moreover, our model exhibits a small number of fail-
ure cases, where it translates semantically distinct objects
incorrectly due to the scene complexity and the biases in
the training data. For instance, as shown in the bottom row
of Figure 2, the model translates the stone ground into the
grass, as well as the ice mountain into the stone mountain.
Addressing these failure cases with more semantic consis-
tency can also be interesting future work apart from the ones
we discussed in Section 5 of the main paper.

References

(1]

(2]

(3]

[4]

(5]

(6]

(7]

(8]

(9]

[10]

(1]

(12]

Eirikur Agustsson and Radu Timofte. NTIRE 2017 chal-
lenge on single image super-resolution: Dataset and study.
In CVPRW, 2017. 2

bryandlee. Freeze generator. https://github.com/
bryandlee/FreezegG, 2020. 1

Bowen Cheng, Ishan Misra, Alexander G Schwing, Alexan-
der Kirillov, and Rohit Girdhar. Masked-attention mask
transformer for universal image segmentation. In CVPR,
2022. 1

Kaiming He, Xiangyu Zhang, Shaoqging Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 1

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A
Efros. Image-to-image translation with conditional adver-
sarial networks. In CVPR, 2017. 1,2

Chanyong Jung, Gihyun Kwon, and Jong Chul Ye. Explor-
ing patch-wise semantic relation for contrastive learning in
image-to-image translation tasks. In CVPR, 2022. 1
Taesung Park, Alexei A Efros, Richard Zhang, and Jun-
Yan Zhu. Contrastive learning for unpaired image-to-image
translation. In ECCV, 2020. 1

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language super-
vision. In ICML, 2021. 1

Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint, 2014. 1

Ivan Skorokhodov, Grigorii Sotnikov, and Mohamed Elho-
seiny. Aligning latent and image spaces to connect the un-
connectable. In CVPR, 2021. 2

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In CVPR, 2018. 1

Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela
Barriuso, and Antonio Torralba. Scene parsing through
ADE20K dataset. In CVPR, 2017. 1

https://github.com/bryandlee/FreezeG
https://github.com/bryandlee/FreezeG

b

s

(g) Ours

(e) CTSS (f) VToonify

box

(d) White

(b) CartoonGAN (c) AnimeGAN

(a) Source

Figure 3: Additional qualitative comparative results. Zoom in for details.

O e 4. Add onal qud d € CO DAra C I'c 00 Or detd

Source Results

Figure 6: Additional results of Scenimefy on natural landscapes. Zoom in for details.

Source Results Source Results

Figure 7: Additional results of Scenimefy on architecture and buildings. Zoom in for details.

Source Results Source Results

Figure 8: Additional results of Scenimefy on animals. Zoom in for details.

Results

Source

Results

Source

Figure 9: Additional results of Scenimefy on food and people. Zoom in for details.

Source Results

Figure 10: Additional results of Scenimefy on other objects. Zoom in for details.

