
Supplementary Material for “Video Action Segmentation via Contextually
Refined Temporal Keypoints”

A. Constructing matching graphs
A.1. Details of permutation loss function

To implement the graph matching module, we simply
following the deep graph matching works [6, 13] to learn
the matching between the target and source graphs. Let
Vs,Vt denote the node sets of source and target graphs re-
spectively. |Vs| = |Vt| = M . The matching is supervised
by the permutation loss [10] as:

Lperm = −
∑

i∈Vs,j∈Vt

(Sgt
i,j logSi,j+(1−Sgt

i,j)(1−logSi,j)),

(1)
where S ∈ [0, 1]

M×M indicates the doubly (sub-)stochastic
matrix generated by Sinkhorn Propagation [1], satisfying
S1 = 1 and S⊤1 ≤ 1. Specifically, S is relaxed from
a discrete permutation matrix X in the general quadratic
assignment programming(QAP) [5] formulation:

max
x

x⊤Qx s.t. X ∈ {0, 1}M×M , Hx = 1, (2)

where x is the column-wise vectorization form of X and H
is a selection matrix ensuring each row and column of X
summing to 1. Q ∈ RM2×M2

is the affinity matrix used
to encodes the node (via diagonal elements) and edge (via
off-diagonal elements) affinities / similarities from source
/ target graphs. In the image matching tasks, researchers
often adopt the combination of deep visual networks such
as VGG [7] and graph convolutional networks(GCN) [3] to
generate the affinity matrix Q. Similarly, we simply adopt
the combination of temporal backbones and GCN to calcu-
late the affinities of temporal nodes.

B. Refinement via Rule-Based Re-Assembling
There is an example of RA shown in Figure 1: Firstly,

action points between every two adjacent boundary points
are representing the same action segment, so they need to be
merged into single action point. Notably, the action point
with the largest confidence score is kept while its coordi-
nate is averaged using confidence weights among other ac-
tion points with the same category. Secondly, the boundary
points between every two adjacent action points need to be

Algorithm 1 Rule-Based Re-Assembling

Input: sets of action keypoints as described, S0 and S1;
Output: action segmentation result, S;

1: for ∀bj ∈ S1 do
2: find i, t that bj < di < · · · < di+t < bj+1

3: merge (di, ci) . . . (di+t, ci+t)
4: end for
5: for ∀(di, ci) ∈ S0 do
6: find j, t that di < bj < · · · < bj+t < di+1

7: merge bj . . . bj+t

8: end for
9: repeat

10: for ∀(di, ci) ∈ S0 that ci = ci+1 do
11: find j that di < bj < di+1

12: delete bj
13: merge (di, ci), (di+1, ci+1)
14: end for
15: until S0, S1 no longer change.
16: construct S by in-painting all ci from bj to bj+1 that

bj < di < bj+1

17: return S

merge action points

merge boundary points

over-complete candidates

assembling

segmentation results

merge adjacent actions

Figure 1: Example of rule-based re-assembling. Points col-
ored in grey indicate boundary points, while the other points
are action points.

merged. Since boundary points are category-free, the merge
operation is a simple confidence-weighted average of their
coordinates. Iteratively merging adjacent actions (i.e., re-

Ground-truth

ASRTK

ASRTK

(w.o. RS)

… … … … …

MS-TCN++

ASFormer

(a) rgb-10-2 from 50salads dataset.

Ground-truth

ASRTK

ASRTK

(w.o. RS)

ASFormer

… … … … …

MS-TCN++

(b) S1-Peanut-C1 from GTEA dataset.

Figure 2: Visualization results of frame-wise classification based (MS-TCN++ [4], ASFormer [12]) and keypoints based
(RTKs) methods on 50Salads and GTEA datasets. There are two parts in each subfigure: (1) the key frames of the rep-
resentative clip from the video; (2) action segmentation results of ground-truth, RTK, RTK without refinement stage (RS),
ASFormer, and MS-TCN++. The purple boxes highlight the better results of RTK comparing to the frame-wise classification
methods. After refinement, RTK removes out-of-context keypoints and provides more reliable boundary predictions.

moving boundary points between two adjacent action points
with the same category, while remaining the action point
with higher confidence score) can gradually satisfy this con-
straint. Therefore, keep repeating this step until the points
no longer change. Finally, the alternating action and bound-
ary points are assembled to construct the segmentation re-
sults. The pseudo-code of RA is shown in Algorithm 1.

C. Modified ASFormer Backbone

This paper adopted a modified ASFormer [12] backbone
for keypoints generation mainly due to reducing the param-
eters of model for fair comparison with the existing state-
of-the-art segmentation methods. There are 2 main mod-
ifications: Firstly, the ASFormer Decoders [12] is simpli-
fied. This is because existing segmentation methods rely
on this kind of architecture to alleviating over-segmentation
errors progressively (similarly, Refinement Stages in MS-
TCN++ [4], cascade structures in BCN [11]). However,
such a structure is not effective in keypoint-based methods.
As a result, we adopted simplified ASFormer Decoders [12]
by reducing the number of layers and increasing the dila-
tion factor from 2 to 4. Moreover, the kernel size of Conv
Forward layer is increased from 3 to 5. Secondly, the key-
points generation are integrated into one shared head. The
head contains multiple temporal convolutions with Instance
normalization [8] and non-linear layers. These two designs
of RTK could save a lot of parameters and make keypoints
generator efficient.

RTK also adopted positional encoding [9], Squeeze-and-
Excitation(SE) block [2] for modeling long temporal depen-

Method F1@{10,25,50} Edit Acc
ASFormer [12] 90.1 88.8 79.2 84.6 79.7
+extra 90.4 87.9 80.5 85.1 79.8
RTK 91.2 90.6 83.4 87.9 80.3

Table 1: Impact of the extra modules in ASFormer and RTK
on GTEA dataset.

dencies, and average pooling layers for feature smoothing.
In Table 1 we study impact of these extra modules for AS-
Former [12] baselines and RTK.

D. Impact of the gradient flow in GM
In the visualization of the convergence of loss function

(shown in Figure 3), turning off the gradient flow of the
graph matching module and keypoints generator is helpful
for the convergence of permutation loss of graph matching
modules.

E. Visualization results
We here show how RTK alleviates the boundary mis-

alignment and over-segmentation problems by analyzing
specific visualization results. For boundary-misalignment,
boundary points predicted by RTK tend to be closer to the
ground truth than the baseline method, as highlighted with
purple boxes in Figure 2. In addition, RTK also outperforms
the baseline, especially in processing the action segments
which depend on the contextual information.

An illustrating example for this point is shown in Fig-

Figure 3: Permutation losses with disabling (in blue) or en-
abling (in orange) the gradient flow to keypoints generators
in the graph matching module during training. The graph
module is jointly tuned from epoch 80.

ure 2b. The frames with no interested actions are labeled
as background (colored in yellow). For the selected video
clip, the human made two attempts of taking a spoon (the
corresponding action is colored in red in the bottom panel),
a first failure with the right hand (since there is actually no
spoon on this side) and a second successful spoon-grasping
with the left hand. Most baseline methods (including RTK
without RS) wrongly predict the first attempt as an action of
take. In contrast, with more sophisticated contextual mod-
eling, RTK with RS predicts correctly.

References
[1] Ryan Prescott Adams and Richard S. Zemel. Ranking via

sinkhorn propagation. CoRR, abs/1106.1925, 2011.
[2] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-

works. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 7132–7141, 2018.

[3] Thomas N. Kipf and Max Welling. Semi-supervised clas-
sification with graph convolutional networks. In 5th In-
ternational Conference on Learning Representations. ICLR,
2017.

[4] Shi-Jie Li, Yazan AbuFarha, Yun Liu, Ming-Ming Cheng,
and Juergen Gall. Ms-tcn++: Multi-stage temporal convolu-
tional network for action segmentation. IEEE Trans. Pattern
Anal. Mach. Intell., 2020.

[5] Eliane Maria Loiola, Nair Maria Maia de Abreu, Paulo
Oswaldo Boaventura Netto, Peter Hahn, and Tania Maia
Querido. A survey for the quadratic assignment problem.
Eur. J. Oper. Res., 176(2):657–690, 2007.

[6] Michal Rolı́nek, Paul Swoboda, Dominik Zietlow, Anselm
Paulus, Vı́t Musil, and Georg Martius. Deep graph match-
ing via blackbox differentiation of combinatorial solvers. In
European Conference on Computer Vision, volume 12373,
pages 407–424, 2020.

[7] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. 2015.

[8] Dmitry Ulyanov, Andrea Vedaldi, and Victor S. Lempitsky.
Instance normalization: The missing ingredient for fast styl-
ization. CoRR, abs/1607.08022, 2016.

[9] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia

Polosukhin. Attention is all you need. pages 5998–6008,
2017.

[10] Runzhong Wang, Junchi Yan, and Xiaokang Yang. Learning
combinatorial embedding networks for deep graph match-
ing. In IEEE International Conference on Computer Vision,
pages 3056–3065, 2019.

[11] Zhenzhi Wang, Ziteng Gao, Limin Wang, Zhifeng Li, and
Gangshan Wu. Boundary-aware cascade networks for tem-
poral action segmentation. In European Conference on Com-
puter Vision, volume 12370, pages 34–51, 2020.

[12] Fangqiu Yi, Hongyu Wen, and Tingting Jiang. As-
former: Transformer for action segmentation. CoRR,
abs/2110.08568, 2021.

[13] Andrei Zanfir and Cristian Sminchisescu. Deep learning of
graph matching. In IEEE Conference on Computer Vision
and Pattern Recognition, pages 2684–2693, 2018.

