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This supplementary material provides details that are not
shown in the main paper. We first present additional imple-
mentation details including keypoints selection, group-wise
centralization and network architecture in Sect. A. After
that, we present ablations on the effects of auxiliary loss and
the process of pre-training in CoSign-2s (§ B.1), dropout
probability in group dropout (§ B.2) and the selection of
α and β in complementary regularization (§ B.3). Then,
we further compare the inference speed without taking CTC
decoding time into account (§ B.4), and present ablation re-
sults of different signals (§ B.5) and keypoints selection of
face (§ B.6). Meanwhile, we evaluate the influence of skele-
ton quality by conducting experiments under different spa-
tial resolution (§ B.7). All ablation studies are conducted on
PHOENIX14 and WER is adopted as the evaluation metric.

A. Additional Implementation Details

A.1. Keypoints Selection and Group-wise Central-
ization

For pose estimation, we choose HRNet [3] combined
with DarkPose [4] trained on COCO-WholeBody [2] as the
estimator. We adopt the implementation by MMPose1 and
generate 133 2D keypoints. As we mentioned in Sect. 3.1,
we select 77 keypoints and divide them into five groups: 9
for body, 21 for left hand, 21 for right hand, 8 for mouth
and 18 for face. We visualize these keypoints in Fig. A, and
the coordinate of each group takes the root keypoint as the
origin. For body group, we use the mid point of shoulders
as the root keypoint.

1https://mmpose.readthedocs.io/en/latest/
model_zoo/wholebody_2d_keypoint.html#
topdown-heatmap-hrnet-dark-on-coco-wholebody

Figure A. Keypoints selected in our approach. The coordinate of
each group takes the root keypoint as the origin.
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Figure B. The network architecture of late fusion.

A.2. Network Architecture

We detail the output dimension of different layers in both
CoSign-1s and CoSign-2s in Table A, where ST-CGN layer
i means the i-th ST-GCN layer in each module of the group-
wise GCN. As for input, we use 2D coordinates and con-
fidence scores generated by the estimator as the input to
CoSign-1s and skeleton branch in CoSign-2s. For motion
branch, the bidirectional movements and confidence scores
are fed to it. The dropout probability p of both CoSign-1s
and CoSign-2s are set to 0.2.

In Sect. 4.3, we compare two different fusion ap-
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Table A. Output dimension of different layers in both CoSign-1s and CoSign-2s.

layers CoSign-1s CoSign-2s
skeleton branch motion branch fusion branch

Shared Linear 64 64 64 -
ST-GCN layer 1 64 64 64 128
ST-GCN layer 2 128 128 128 256
ST-GCN layer 3 256 256 256 512
Fusion MLP 1024 - - 1024
1D CNN 1024 - - 1024
BiLSTM 1024 - - 1024

Table B. Inference speed comparison on PHOENIX14 without pose estimation stage taking into account.
SMKD [1] Baseline CoSign-1s CoSign-2s

Inference Speed w/ Decoding 11.2 seq/s 26.1 seq/s 18.8 seq/s 12.7seq/s
Inference Speed w/o Decoding 16.2 seq/s 82.8 seq/s 39.1 seq/s 19.2 seq/s

proaches, and the network architecture of late fusion is
shown in Fig. B. Same as CoSign-2s, we attach two aux-
iliary classifiers on both skeleton and motion branches, and
pre-train the skeleton and motion-based Cosign-1s indepen-
dently for several epochs. The loss weight λ also keeps
same as CoSign-2s.

A.3. Precision of Different Signals

In Fig. 4, we visualize six different sign examples and re-
port the precision of different signals. Different to WER in
Fig. 5, the precision of a signal for a sign is the percentage
that this signal can make correct predictions for all exam-
ples of this sign in both PHOENIX14 dev and test sets.

B. Additional Results
B.1. Ablation on Auxiliary Loss and Pre-training

As we mentioned in Sect. 3.2, we attach two auxil-
iary CTC losses for both skeleton and motion branches in
CoSign-2s, and pre-train them to ensure convergence. Ex-
perimental results in Table C show that both auxiliary loss
and pre-training can reduce the WER. It illustrates that dif-
ferent branches have different convergence rates and aux-
iliary loss combined with pre-training can better help each
branch converge.

Table C. Ablation results (WER, %) of auxiliary loss and pre-
training in CoSign-2s. The best results are bold.

Auxiliary loss Pre-training Dev Test
20.9 21.5

✓ 20.8 21.1
✓ ✓ 20.7 20.5

B.2. Ablation on Dropout Probability

In Sect. 3.1, we propose a group dropout mechanism
where the dropout mask of each clip is independently sam-

Table D. Ablation results (WER, %) of dropout probability p.
Dropout Probability Dev Test

0 21.8 21.9
0.1 21.4 21.4
0.2 21.2 21.4
0.3 21.4 22.5
0.4 21.8 21.6

Table E. Results (WER, %) of different α and β on PHOENIX14
Dev/Test sets using CoSign-1s.

α β 1 2 4
1 21.1/21.3 21.0/21.4 21.5/21.3
2 21.4/21.6 20.9/21.2 21.2/21.9
4 21.2/21.4 21.3/21.2 21.2/21.7

pled from a Bernoulli distribution B(p). We evaluate dif-
ferent dropout probability p with a fixed clip length of 25
and present results in Table D. We choose 0.2 as the default
setting as it can provide more diverse masks.

B.3. Ablation on different α and β

In Sect. 3.1, we propose complementary regularization
and there are two hyper-parameters α and β control the loss
weights of complementary regularization on auxiliary and
primary predictions. We perform grid search for them and
present the results in Table E. For CoSign-2s, we use the
same α and β as CoSign-1s

B.4. Inference Speed

In Sect. 4.2, we report the training and inference effi-
ciency on a NVIDIA GeForce RTX 3090 GPU with data
cached. The inference speed is the average sequence per
second on PHOENIX14 dev and test sets with a batch size
of 1, which includes the time consumed by CTC decod-
ing. Because the decoding time is method independent,
we also report the inference speed without taking decod-
ing time into account in Table B. Here, we also do not take



Table F. Ablation results (WER, %) of different signals.
Signals Dev Test
Body 40.0 38.7
Left Hand 55.2 54.6
Right Hand 35.7 35.4
Mouth 54.3 53.2
Face 52.2 50.7

Table G. Ablation results (WER, %) of combination of signals.
Combination of Signals Dev Test
Body 40.0 38.7
Body+Left Hand 36.6 35.9
Body+Left Hand+Right Hand 28.3 27.8
Body+Left Hand+Right Hand+Mouth 22.4 22.8
Body+Left Hand+Right Hand+Mouth+Face 21.8 21.9

Table H. Results (WER, %) on PHOENIX14 with additional face
keypoints. Baseline method is CoSign-1s without complementary
regularization.

Additional Face Keypoints Dev Test
Baseline 21.8 21.9
+ Keypoints of Eyebows 21.9 22.3
+ Keypoints of Eyes 21.8 22.4
+ Keypoints of Nose 21.8 22.0

pose estimation stage into account. For the inference effi-
ciency, we make some attempts and provide the relation-
ship between SLR performance and the spatial resolution
in Sect. B.7. CoSign can achieve comparable results even
when the spatial resolution is reduced to 96 × 96, which
reveals the potential of CoSign in improving the inference
efficiency. Meanwhile, we believe the speed of extracting
skeleton from videos is not a bottleneck with the develop-
ment of pose estimation (e.g., MediaPipe Holistic can run in
near real-time even on midtier devices like Samsung S9+ 2).

B.5. Ablation on Different Signals

In Sect. 4.3, we evaluate the performance of different
trained models on a specific group by masking keypoints
of other groups and fine-tuning the model with frozen fea-
ture extractor. We further conduct experiments by directly
training CoSign-1s without LCR using a specific group as
input and present the results in Table F. We can see using the
signal from mouth or face only can achieve a WER around
50% which indicates these signals also play a critical role
in CSLR. Meanwhile, as shown in Table G, the combined
use of different signals could bring a WER decrease, which
illustrates every signal is indispensable.

B.6. Ablation on keypoints selection of face

As mentioned in Sect. A, we only use keypoints of the
cheek part during the keypoints selection of the face. A

2https://ai.googleblog.com/2020/12/
mediapipe-holistic-simultaneous-face.html

224 192 160 128 96 64
Spatial Resolution

20

21

22

23

24

25

W
or

d 
Er

ro
r R

at
e 

(%
)

0

1

2

3

4

5

EP
E 

(p
x)

Dev
Test
Body
Hands
Mouth
Face

Figure C. WER (%) on PHOENIX14 dev and test sets, and EPE
(px) of each group based on different spatial resolution. WER is
labeled on the left axis and EPE is labeled on the right.

comparison study in Table H shows that adding keypoints
out of cheek part can not bring performance gains in our
preliminary experiments. We assume that this is because
current datasets are collected under constrained conditions
(PHOENIX14 is collected from TV weather forecasts) with
limited samples, facial expressions play a limited role and
adding more keypoints may lead to overfitting and affect the
extraction of other useful information. Therefore, we only
utilize keypoints of the cheek part for efficiency.

B.7. Influence of Skeleton Quality

As mentioned in Sect. 3.1, inaccurate estimations may
affect the accuracy of CSLR models. To evaluate the in-
fluence of skeleton quality, we conduct experiments by re-
ducing the spatial resolution for pose estimation. Based on
PHOENIX14, we generate six degrees of estimation qual-
ities of skeleton data by first resizing the frames in each
sign video to six different spatial resolution: 224 × 224,
192 × 192, 160 × 160, 128 × 128, 96 × 96 and 64 × 64.
Then we conduct pose estimation on these sets and train
CoSign-1s using them.

As shown in Fig. C, the WER doesn’t have a significant
increase until spatial resolution is reduced to 64×64, where
the WER increases by 3.4%/2.5% on the Dev/Test sets. Fur-
thermore, we use mean end-point-error (EPE) to measure
the skeleton quality of different degrees. Specifically, we
use J = {J1, · · · ,JT } to represent the skeleton sequence
estimated under resolution 256× 256. Each skeleton frame
contains K keypoints Ji = {Ji,k ∈ R2|k = 1, · · · ,K}.
We view the keypoints with a confidence score greater than
0.5 as ground truth. For each degree d, we divide all key-
points into four groups (body, hands, mouth and face) and

https://ai.googleblog.com/2020/12/mediapipe-holistic-simultaneous-face.html
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Table I. Percentage (%) of keypoints with a confidence score
greater than 0.5 under different spatial resolution.

Group Spatial Resolution
224 192 160 128 96 64

Body 99 99 99 99 99 98
Hands 88 88 88 88 87 83
Mouth 100 100 100 100 100 99
Face 100 100 100 100 100 99

the EPE of group α (denoted as Gα) is defined as:

EPE(d, α) =
1

T

T∑
i=1

1

|Ng|
∑
k∈Ng

||Ji,k − Jd
i,k||2

Ng = {k|k ∈ Gα, conf(Ji,k) > 0.5},

(1)

where Jd
i,k means the keypoint estimated under degree d

and conf(Ji,k) means the confidence score of Ji,k.
A greater EPE represents a lower skeleton quality of this

group. Fig. C visualizes the EPE of each group under dif-
ferent degrees. Although hands often occupy smaller re-
gions than body, they have a much larger EPE than body
(5.3 vs. 3.1 pixel under 64×64 resolution), which indicates
keypoints of hands significantly suffer from inaccurate esti-
mation. This phenomenon reminds us that estimating key-
points of hands needs a higher resolution and a lower reso-
lution (128 × 128) is enough for keypoints of other groups
which can further reduce the computation cost of pose esti-
mation and make the proposed approach more practicable.

Finally, for each group, we calculate the percentage of
keypoints with a confidence score greater than 0.5 and vi-
sualize the results in Table I. We can see even keypoints of
hands have inaccurate estimation under resolution 64× 64,
the percentage of keypoints with high confidence scores
doesn’t reduce much. This phenomenon shows more efforts
are needed to handle the estimation noise in skeleton-based
CSLR.
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