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In the following Supplementary Materials, we provide
additional experimental results on more attack patterns in
Section “Experiments with More Unseen Types of Adver-
sarial Attacks”, and detailed results of SSAT and Mixup
SSAT on benign data in Section “Detailed Results on Be-
nign Data”. In Section “More Data-efficient Training for
SSAT”, we demonstrate that our SSAT method can achieve
better performance with even fewer adversarial examples
than the standard adversarial training. Section “Detailed
Design of the Model” and Section “Details on Experiment
Settings” provide details on model design and training set-
tings, respectively. Finally, we discuss the limitations and
future work in Section “Limitations and Future Work”.

1. Experiments with More Unseen Types of
Adversarial Attacks

In the experiment section of the main paper, subsection
4.2.2 “Effectiveness of SSAT in Robust Generalization on
Different Types of Attacks”, we study the robustness of
our SSAT approach and the standard adversarial training
method (Standard-AT) against various types of attacks in-
cluding those targeting ADE (Average Displacement Er-
ror), lateral deviation and longitudinal deviation. This is
motivated by the observation from recent works [3, 1] that
there is a gap in robust generalization, i.e., the adversarially
trained model may be robust to a specific type of attack but
can be circumvented easily by other types of attacks (that
are unseen during training), e.g., other lp norms, different
attack targets, or different constraints such as ϵ or maximum
deviation in trajectory prediction.

In this supplementary material, we further evaluate the
robustness of our SSAT approach and the standard adver-
sarial training method (Standard-AT) against two additional
types of attacks, L1 and FDE, with different lp norm, larger
constraints, and one more target function. For these two at-

tack types, we relax the maximum deviation constraint from
1m to 1.5m. The experiments shown below on these two ad-
ditional attack types L1 and FDE further demonstrate that
our proposed SSAT method has better robust general-
ization than the standard adversarial training method
(Standard-AT). The experiments are conducted in Argov-
erse 1 dataset[2].

Figure 1: L1 attacks: We apply adversarial examples op-
timized for l1 loss to attack the models that are adversar-
ially trained on ADE, lateral and longitudinal attacks (de-
noted as “AT on ADE”, “AT on Lat”, “AT on Lon”, respec-
tively). The result shows that the models trained with our
SSAT method (on any one of ADE, lateral and longitudinal
attacks) are more robust to the unseen L1 attacks than the
original model (Original) and the standard adversarial train-
ing method (Standard-AT).

1.1. L1 Attacks

We optimize the adversarial examples to maximize the
l1 loss, as shown below in Equation (1), between the pre-



dicted trajectories and the ground truth. Then, we attack the
models that are adversarially trained on ADE, lateral and
longitudinal attacks, respectively. The performance is mea-
sured with the average displacement errors.

n∑
i=1

|ytrue − ypredicted|+
n∑

i=1

|xtrue − xpredicted| (1)

The results in Fig. 1 demonstrate that the model adver-
sarially trained with our approach SSAT is more robust to
L1 attacks than the standard adversarial training method
(Standard-AT).

1.2. FDE Attacks

Final Displacement Error (FDE) measures the root mean
squared error (RMSE) of the last waypoints between the
predicted trajectories and the ground truth. We use it as a
new target for optimizing the adversarial examples and then
attack the models that are adversarially trained on ADE, lat-
eral, and longitudinal attacks, respectively. The results are
shown in Fig. 2. SSAT again shows better performance (i.e.,
more robust) on this new type of attacks than Standard-AT.

Figure 2: FDE attacks: We apply adversarial examples op-
timized for FDE to attack the models that are adversarially
trained on ADE, lateral and longitudinal attacks (denoted
as “AT on ADE”, “AT on Lat”, “AT on Lon”, respectively).
The result shows that the models trained with our SSAT
method (on any one of ADE, lateral and longitudinal at-
tacks) are more robust to the unseen FDE attacks than the
original model (Original) and the standard adversarial train-
ing method (Standard-AT).

2. Detailed Results on Benign Data
In Table 1, we provide more detailed results of the pro-

posed adversarial training methods’ performance on benign
examples in the Argoverse 1 dataset, measured by ADE
(Average Displacement Error), FDE (Final Displacement

Error), and MR (missing rate). Note that MR is the ratio
of predictions whose final position is more than 2 meters
away from the ground truth. We can find that our SSAT
method trained under various attacks could lead to some re-
duction in standard accuracy for benign data. By applying
the MixUp technique, the accuracy drop on benign data can
be mitigated, especially for ADE attacks.

Table 1: We present the performance of our proposed
methods on benign samples. The models are adversarially
trained on different patterns of attacks and evaluated with
three metrics.

Methods ADE FDE MR
Original Model 1.43 3.08 0.53

SSAT on ADE attack 1.85 3.89 0.64
Mixup-SSAT on ADE attack 1.62 3.50 0.58

SSAT on Lat attack 1.65 3.61 0.62
MixUp-SSAT on Lat attack 1.64 3.61 0.62

SSAT on Lon attack 1.65 3.61 0.62
MixUp-SSAT on Lon attack 1.67 3.58 0.60

3. More Data-efficient Training for SSAT
Fig. 3 demonstrates that our SSAT method can achieve

better performance with fewer adversarial examples than
the standard adversarial training (Standard-AT), by utiliz-
ing semantic features and semi-supervised learning. Such
improvement in training efficiency is quite beneficial since
the adversarial training process is time-consuming and the
adversarial samples are often limited.

4. Detailed Design of the Model
All methods’ feature extractors are based on the one

in [4], which is a representative graph-based method. The
feature extractor consists of an actor network, a map net-
work and four types of attention networks. The actor net-
work uses three 1-D convolutions to extract multi-scale fea-
tures from time-series input trajectory data. The map net-
work is designed to learn the structured map representation
from vectorized map input. Then, the extracted features are
fed into a fusion network that calculates different attentions
of actor-to-actor, actor-to-lane, lane-to-actor, and lane-to-
lane. Finally, 128-dimensional features are generated for
downstream tasks.

Our AAE encoder is based on a layer of linear residual
block and three heads to predict the three different types of
latent variables.

As mentioned in the main paper, we divide the latent
space into three different parts, representing the latent se-
mantics (intention), longitudinal semantics (time headway)
and remaining information, respectively. Fig. 4 demon-



(a)

(b)

Figure 3: Evaluated by the ADE (average displacement er-
ror), we observe that our SSAT method can achieve better
performance with fewer adversarial examples than the stan-
dard adversarial training method (Standard-AT). Fig. (a) is
trained on the ADE attacks. Fig. (b) is trained on the lateral
attacks. The experiments are conducted on the Argoverse 1
dataset.

strates the reason why we choose a log-normal distribution
to regularize the longitudinal semantics.

Three discriminators with the same structure are used to
regularize the distribution of latent space. They consist of
two-layer fully-connected neural networks and output a dis-
tinction score after a sigmoid layer.

The decoder takes 10-dimensional latent vectors as input
and projects the predicted results from the latent space to
the trajectory space. The decoder is a simple three-layer
fully-connected neural network.

Figure 4: The histogram and fitted distributions of time
headway, the longitudinal semantics our method utilizes.

5. Details on Experiment Settings

5.1. Generation of Adversarial Examples:

We use Projected Gradient Decent (PGD) [5] to generate
adversarial examples for all attack types, and its parameters
are set as follows in Table 2.

Table 2: PGD setting for different types of attacks.

Attacks Max perturbation ϵ Steps Step size α
ADE 0.2 20 0.01

Lateral 0.3 40 0.01
Longitudinal 0.3 20 0.01

L1 0.4 20 0.01
FDE 0.4 20 0.01

5.2. SSAT Learning Rate:

For Argoverse 1 and 2, we set the learning rate for tra-
jectory prediction loss, regularization loss, semi-supervised
loss, and discrimination loss as 5e-4,1e-6,1e-5, and 1e-6,
respectively. For the Apolloscape dataset that consists of
simpler scenarios without map contexts, we set the learning
rate for trajectory prediction loss, regularization loss, semi-
supervised loss, and discrimination loss as 5e-5, 5e-7, 5e-6,
and 5e-7, respectively.

6. Limitations and Future Work

Our work proposes an adversarial training method to en-
hance the robustness of trajectory prediction and improve its
robust generalization performance on unseen attacks. How-
ever, there are some trade-offs. First, by adding a VAE ar-
chitecture with disentangled latent space [6], the prediction



accuracy in benign cases will drop slightly. Then, simi-
lar to the phenomenon observed in adversarial training for
other domains, there is also a trade-off between adversarial
robustness and standard accuracy, as discussed in the pa-
per. To address these challenges in future work, we plan
to explore the following directions: 1) further optimizing
the architecture and method for adversarial training, e.g., by
adding regularization [7] and collecting more data [5], and
2) exploring adaptive system-level design. For the system-
level design, we can utilize the VAE architecture to build an
additional reconstruction module and detect anomalies by
comparing the reconstruction error. When the input is de-
tected as an anomaly (i.e., potential attack), the system will
switch to a robust mode for trajectory prediction and also
take corresponding actions in the planning module; other-
wise, the system will use the original prediction mode to
maintain the standard accuracy.

In addition, we also plan to study certified robustness for
trajectory prediction. From the literature and our own ex-
perience in this area, there could be significant challenges
for analyzing certified robustness when addressing larger
neural networks and larger input disturbances, which are
common in the case of adversarial attacks to trajectory pre-
diction – the GNN and AAE networks used in our work are
quite complex, and the carefully optimized adversarial ex-
amples often induce larger input disturbance at places than
the small random noises typically being studied in certified
robustness. One direction we are thinking of is to intro-
duce physical dynamics to the latent space for facilitating
the analysis of certified robustness.
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