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A. Network Architecture

We illustrate the detailed network architecture of the pro-
posed LED in Fig. 1, a UNet-style [6] architecture with five
stages. Both in encoder and decoder, each stage is consisted
of two sequential RepNR blocks. It is worth noting that, ex-
cept AINDNet [3], all other methods shared a same UNet
architecture as SID [1]. Moreover, the LED would finally
yield the same architecture for fair comparison after repa-
rameterization (Sec. B).

B. Structural Reparameterization Process

In this section, we would detail the process of structural
reparameterization. As stated in Sec. 3.4 in the main paper,
the RepNR block consists of serial vs. parallel linear map-
ping, which can be fused to a single one. Specifically, the
RepNR block can be transformed into a plain 3×3 convolu-
tion. Formally, this architecture contains two 3×3 convolu-
tions with weights {W0,W1} and bias {b0, b1}, and one of
them follows a CSA layer. Let CSA(x) = kx + b, where
k, b denote the weight and bias of it. Thus, the result for the
input x can be represented as:

x̃ = W0(CSA(x)) + b0 +W1x+ b1

= W0(kx+ b) + b0 +W1x+ b1

= (W0k +W1)x+ (W0b+ b0 + b1)

= W̃x+ b̃,

(1)

where the whole deployment process is formulated. It
demonstrates that our RepNR block can be transformed into
a plain 3×3 convolution, and brings no extra costs during
inference. It worth noting that we leveraged the online repa-
rameterization strategy same as [2], thus there is no perfor-
mance gap at all between training and testing.

*Equal contribution.
†C. L. Guo is the corresponding author.

C. More Visual Results
LED could better recover details compared with ELD [7]

(calibration-based method) in Fig. 2. As shown in Fig. 3,
LED outperforms other calibration-based methods [7, 8]
in removing out-of-model noise. In Fig. 4 and Fig. 5-
8, we provide more results on two benchmarks: ELD [7]
and SID [1]. The restoration results of Kristina et al. [5],
Noise2Noise [4], AINDNet [3], Zhang et al. [8] and
ELD [7] are presented for comparison.
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Figure 1. Detailed network architecture for our proposed LED. The Ĉ × Ĥ × Ŵ formatted expression on the arrow indicates the feature
size for the corresponding stage. H × W is the input resolution. RepNR block with ×2 denotes two RepNR blocks in a sequential way.
After structural reparameterization (Sec. B), our method outputs a same structure as SID [1] and other methods for fair comparison.

(a) Input (b) ELD [7] (c) LED (Ours)

Figure 2. Proposed LED outperforms current state-of-the-art method in detail recovery significantly.
Input Zhang et al. [8] ELD [7] LED (Ours) GT

Figure 3. Compared with state-of-the-art calibration-based methods: ELD [7] and Zhang et al. [8], proposed LED is able to remove the
out-of-model noise (Zoom-in for best view).



Input ELD [7] LED (Ours) GT

Figure 4. Visual comparison between our LED and other state-of-the-art methods on the ELD [7] dataset (Zoom-in for best view). We
amplified and post-processed the input images with the same ISP as ELD [7].



Input / PSNR Kristina et al. [5] / 36.78 Noise2Noise [4] / 40.37 AINDNet [3] / 40.31

Zhang et al. [8] / 40.33 ELD [7] / 40.71 LED (Ours) / 41.32 GT / ∞

Input / PSNR Kristina et al. [5] / 40.09 Noise2Noise [4] / 41.91 AINDNet [3] / 41.57

Zhang et al. [8] / 41.46 ELD [7] / 39.96 LED (Ours) / 42.86 GT / ∞

Input / PSNR Kristina et al. [5] / 38.76 Noise2Noise [4] / 43.42 AINDNet [3] / 40.04

Zhang et al. [8] / 43.31 ELD [7] / 41.27 LED (Ours) / 44.33 GT / ∞

Figure 5. Visual comparison between our LED and other state-of-the-art methods on the SID [1] dataset (Zoom-in for best view). We
amplified and post-processed the input images with the same ISP as ELD [7].



Input / PSNR Kristina et al. [5] / 36.76 Noise2Noise [4] / 41.43 AINDNet [3] / 39.70

Zhang et al. [8] / 41.14 ELD [7] / 39.28 LED (Ours) / 42.14 GT / ∞

Input / PSNR Kristina et al. [5] / 42.47 Noise2Noise [4] / 46.61 AINDNet [3] / 44.30

Zhang et al. [8] / 46.69 ELD [7] / 47.68 LED (Ours) / 47.69 GT / ∞

Input / PSNR Kristina et al. [5] / 39.96 Noise2Noise [4] / 42.78 AINDNet [3] / 41.86

Zhang et al. [8] / 42.67 ELD [7] / 39.72 LED (Ours) / 43.56 GT / ∞

Figure 6. Visual comparison between our LED and other state-of-the-art methods on the SID [1] dataset (Zoom-in for best view). We
amplified and post-processed the input images with the same ISP as ELD [7].



Input / PSNR Kristina et al. [5] / 42.87 Noise2Noise [4] / 45.32 AINDNet [3] / 44.38

Zhang et al. [8] / 45.10 ELD [7] / 45.26 LED (Ours) / 46.44 GT / ∞

Input / PSNR Kristina et al. [5] / 35.65 Noise2Noise [4] / 41.64 AINDNet [3] / 38.93

Zhang et al. [8] / 40.93 ELD [7] / 41.21 LED (Ours) / 40.93 GT / ∞

Input / PSNR Kristina et al. [5] / 44.18 Noise2Noise [4] / 45.41 AINDNet [3] / 45.48

Zhang et al. [8] / 45.60 ELD [7] / 42.89 LED (Ours) / 48.28 GT / ∞

Figure 7. Visual comparison between our LED and other state-of-the-art methods on the SID [1] dataset (Zoom-in for best view). We
amplified and post-processed the input images with the same ISP as ELD [7].



Input / PSNR Kristina et al. [5] / 35.46 Noise2Noise [4] / 37.14 AINDNet [3] / 37.09

Zhang et al. [8] / 37.25 ELD [7] / 37.29 LED (Ours) / 37.53 GT / ∞

Input / PSNR Kristina et al. [5] / 43.10 Noise2Noise [4] / 44.72 AINDNet [3] / 44.70

Zhang et al. [8] / 46.54 ELD [7] / 47.24 LED (Ours) / 48.77 GT / ∞

Input / PSNR Kristina et al. [5] / 32.97 Noise2Noise [4] / 38.80 AINDNet [3] / 38.40

Zhang et al. [8] / 38.24 ELD [7] / 38.63 LED (Ours) / 49.25 GT / ∞

Figure 8. Visual comparison between our LED and other state-of-the-art methods on the SID [1] dataset (Zoom-in for best view). We
amplified and post-processed the input images with the same ISP as ELD [7].


