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Feature Visualization. In Fig. 1, the upper row shows the
t-SNE [8] visualization of the original representations, we
observe that ERM and prediction-based consistency regu-
larization do not distinguish well between categories, while
OCR separates different classes more clearly. The bottom
row represents the t-SNE of the residual components, we
observe an opposite phenomenon to the upper row: The
residual components of different classes learned by OCR
are mixed together, i.e., less task-related information. As
a comparison, for the model trained with ERM, the mix-
ing degree of different categories is not high, which means
that the residual components of ERM still retain some task-
related information, and the model will be affected by
domain-specific attributes. Prediction-based Consistency
regularization improves ERM, but it cannot eliminate the
domain-specific information well compared with OCR.
Pseudocode for OCR. For a more practical understanding,
we summarize the pseudocode of the proposed OCR in Al-
gorithm 1.
Detailed Results for Office-Home. In Table 1, we report
the detailed results on Office-Home dataset.
Detailed Parameters for Data Augmentations. In Ta-
ble 2-Table 4, we present the detailed parameters of trans-
formations for the augmented images in four datasets. We
describe data augmentation using the PyTorch notations.

Among them, GaussianNoise overlaps with the cor-
ruption in CIFAR-C. However, Gaussian Noise is only one
of the 15 corruptions in CIFAR-C, with minimal impact
on the final result. After removing the GaussianNoise
data augmentation, the test error on GaussianNoise data in-
creases from 36.5 to 37.9, while the average test error of 15
corruptions increases from 31.32 to 31.41. Therefore, our
improvements mainly come from the proposed method, the
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effect of the overlapped data augmentation is minimal.
Implementation Details. In the experiments, we test our
method on four different cross-domain tasks: domain adap-
tation, test-time adaptation, domain generalization classifi-
cation and domain generalization sementic segmentation.

For the domain adaptation task, the experiment is based
on CDAN [6] and SHOT [4], respectively. For the source-
free setting of domain adaptation, we use ResNet-50 pre-
trained on ImageNet as the backbone. We replace the fi-
nal FC layer with a bottleneck layer of 256 units and an
FC classifier layer. A BN layer and a weight normaliza-
tion layer are put after the bottleneck layer and classifier
layer, respectively. We trained the whole network by back-
propagation, with the penultimate bottleneck layer having
a learning rate 10 times that of the backbone layers. The
weights of the classifier are fixed. We employ mini-batch
SGD optimizer with a momentum of 0.9, a weight decay of
1e−3 and learning rate 1e−2 for the bottleneck layers and
1e−3 for the remaining layers. The batch size is 48. For
the hyper-parameter, we set λ0 = 0.7. The weight for the
newly added OCR is 0.2.

For the source-use setting of domain adaptation, We train
the model through back propagation. The learning rate of
the FC layer is 10 times that of the remaining layers. We
employ mini-batch SGD optimizer with momentum 0.9 and
learning rate of t-th iteration γt = γ0(1 + αt/T )−β , where
T is the total iteration number. We set λ0 = 0.7 and the
weight of OCR loss as 0.2.

For the test-time adaptation task, the implementation is
based on [9]. we use ResNeXt-29 pre-trained on the clean
CIFAR100 dataset as the backbone. We update the model
only one step per iteration. We adopt the Adam optimizer
with learning rate 1e-3. Other parameters are set according
to [9]. We set λ0 = 0.8 and the weight of OCR loss as 0.2.

For the domain generalization classification, the imple-
mentation is based on Dassl.pytorch [11]. We use the mini-



Algorithm1: Order-preserving Consistency Regularization

# g: backbone model
# f: classifier
# Aug: augmentation function
# R: the disentanglement function
# get lambda: function to compute lambda in Eq. (4)
# H: function to compute entropy
for x in dataloader: # load a minibatch x

x2 = Aug(x) # random augmentation
z1, z2 = g(x), g(x2) # representations
lambda = get lambda() # the ratio
zn = R(z2, z1, lambda) # domain-variant rep.
yn = f(zn) # prediction of domain-variant rep.
L = H(Softmax(yn)) # OCR loss
L.backward() # back-propagate
update(g, f) # SGD update

batch SGD optimizer with the initial learning rate of 0.002
(except for cartoon with a initial learning rate of 0.02). The
learning rate scheduler is cosine. The total optimization
epoch is 50. For the hyper-parameters, we set λ0 = 0.5.
The weight for the newly added OCR loss is 0.2.

For the domain generalization semantic segmenta-
tion, the implementation is based on [2]. We use
DeepLabV3+ [1] as the backbone model. We employ the
mini-batch SGD optimizer with an initial learning rate of
1e-3 and momentum of 0.9. We adopt the polynomial learn-
ing rate scheduling [5] whose power is 0.9. The model is
trained for 40K iterations. We set the batch size as 2. For
the hyper-parameter, we set λ0 = 0.1. The weight for the
newly added OCR loss is 0.3.



Table 1. Accuracy (%) on Office-Home with ResNet-50 as backbone. ”P-Cons. Regular.” denotes prediction-based consistency regulariza-
tion. The best results are highlighted by bold numbers. ”SF” denotes source-free.

Method SF Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg.
MCD [7] × 48.9 68.3 74.6 61.3 67.6 68.8 57.0 47.1 75.1 69.1 52.2 79.6 64.1

w/ OCR [7] × 51.6 70.7 76.8 64.1 69.7 71.6 59.7 49.6 78.0 71.3 54.7 81.8 66.6
CDAN [6] × 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8

w/ OCR × 54.0 74.2 78.5 61.1 73.4 71.2 60.7 53.4 80.6 72.2 54.2 82.7 68.0
ResNet-50 [3]

√
34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1

Source-only
√

44.6 67.3 74.8 52.7 62.7 64.8 53.0 40.6 73.2 65.3 45.4 78.0 60.2
NRC [10]

√
57.7 77.9 81.5 68.3 78.1 78.6 66.2 56.0 83.0 72.4 58.7 84.4 71.9

w/ P-Cons. Regular.
√

57.2 78.1 82.1 68.3 78.4 78.1 66.1 56.6 82.7 74.0 59.0 84.6 72.1
w/ OCR

√
56.9 79.1 82.9 69.5 78.3 79.7 67.9 56.4 82.6 74.7 59.0 83.8 72.6

SHOT [4]
√

57.1 78.1 81.5 68.0 78.2 78.1 67.4 54.9 82.2 73.3 58.8 84.3 71.8
w/ P-Cons. Regular.

√
56.2 77.3 82.6 68.9 78.4 79.5 66.9 53.7 82.8 74.0 58.5 84.8 72.0

w/ OCR
√

58.4 78.2 81.4 68.2 78.6 80.2 67.5 57.7 83.1 75.2 60.0 84.6 72.8

Table 2. Parameters of the transformations for augmented images in PACS dataset. “Prob.” means the applying probability.

Transformation Parameter Prob.
RandomResize height=224, width=224 1.0
ColorJitter brightness=0.4, contrast=0.4, saturation=0.4, hue=0.1 1.0

RandomGrayscale 0.2
GaussianBlur kernel size=21 0.5

RandomHorizontalFlip 0.5
Random2DTranslation 0.5

Table 3. Parameters of the transformations for augmented images in Office-Home and GTAV. “Prob.” means the applying probability.

Transformation Parameter Prob.
RandomResizedCrop size=224, scale=(0.2,1.0) 1.0

ColorJitter brightness=0.4, contrast=0.4, saturation=0.4, hue=0.1 0.8
RandomGrayscale 0.2
GaussianBlur kernel size=[0.1, 2.0] 0.5

RandomHorizontalFlip 0.5

Table 4. Parameters of the transformations for augmented image in CIFAR100-C dataset. “Prob.” means the applying probability.

Transformation Parameter Prob.
ColorJitter brightness=0.4, contrast=0.4, saturation=0.4, hue=0.1 0.8
GaussianBlur kernel size=5,sigma=[0.001,0.5] 0.75
CenterCrop size=32 1.0

RandomHorizontalFlip 0.5
GaussianNoise mean=0, std=0.005 0.75
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Figure 1. t-SNE [8] visualization. The upper row shows the t-SNE visualization of the original representations, we observe
that ERM and consistency regularization do not distinguish well between categories, while our method separates different
classes more clearly. The bottom row represents the t-SNE visualization of the residual components, the residual components
of different classes extracted by OCR are mixed together, i.e., less task-related information.
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