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A. Datasets
Middlebury is limited to indoor scenes with 15 training

image pairs and 15 testing image pairs captured in high res-

olution, and the maximum disparity can exceed 600 pixels.

In this paper, we use full resolution to evaluate Middlebury.

ETH3D contains 27 training and 20 testing low reso-

lution image pairs, captured by monochrome stereo cam-

eras with smaller baselines, which have a disparity range of

0− 64.

KITTI 2012/2015 contain images with a large aspect ra-

tio (> 3), focusing on real-world urban driving scenarios.

KITTI 2012 contains 194 training and 195 testing image

pairs, while KITTI 2015 contains 200 training and 200 test-

ing image pairs. The disparity range is between 0− 230.

B. Implementation Details
The sampling point area K is set as 3×3 and 1×9, which

is the same as CREStereo [2]. The channel number after

feature extraction is 256 for CREStereo++ RVC and 64 for

Lite-CREStereo++, respectively. The iteration number of

CREStereo++ RVC for evaluation is set as 20.

The method CREStereo++ RVC is trained with 8

NVIDIA V100 GPUs, with a total batch size of 32. The

method Lite-CREStereo++ is trained with 2 NVIDIA V100

GPUs, with a total batch size of 32. All modules are initial-

ized from scratch with random weights. Asymmetric chro-

matic augmentations including shifts in brightness, contrast

and gamma are employed for data augmentation. Slight ran-

dom homography transformation and asymmetric occlusion

[10] are also applied to the right image.

C. Memory Consumption
While memory consumption is also an important factor

of stereo matching, we compare the training and inference

memory in Table. a. All experiments are evaluated on V100

GPUs with a batch size of 32 for training. And for infer-

ence, the input size is 384×1248 (KITTI size) with a sin-

gle V100 GPU. As can be seen from the table, our Lite-

CREStereo++ has the lowest memory consumption and is

also efficient enough to be trained on 1080/2080 GPUs.

Table a: The comparison of training memory, inference memory,

and training speed with existing methods.

Method Train (GB) Infer (GB) Train Speed (s/iter)

AANet[9] 7.42 2.20 2.38

Fast-ACVNet[8] 7.35 3.19 1.44

Lite-CREStereo++ 5.98 1.89 1.72

CREStereo++ RVC 26.6 3.51 4.13

D. Compared with CREStereo

Tab.b depicts the comparison results of CREStereo[2]

on target datasets to illustrate the effectiveness of the pro-

posed method. The experiments are trained on full datasets

with the same protocol and settings, and evaluated follow-

ing CREStereo. Specifically, the proportion of Middlebury

and ETH3D in the training set is 2%, and the batchsize is

16. For Middlebury, the inference size is set as 1536×2048;

for ETH3D, 768×1024. Reshape and 2-stage inference are

adopted for both datasets. As can be seen from the table, the

proposed method outperforms CREStereo on both datasets,

which illustrates the effectiveness of the UGAC module.

Table b: Comparison results between CREStereo and the proposed

method on Middlebury and ETH3D.

Methods
Middlebury (Full) ETH3D

Bad 2.0 AvgErr Bad 1.0 AvgErr

CREStereo 4.53 0.93 1.01 0.16

CREStereo++ 3.07 0.85 0.88 0.14

1



E. Table 3.

All of the results on Middlebury are computed for all

pixels and full resolution, including Table 3 in the origi-

nal paper. The results of comparison methods in Table 3

are obtained from the public codes and papers using the of-

ficial weights without retraining, except RAFT-Stereo [3]

and CREStereo since they didn’t report the results on all of

the four datasets. Thus, we re-trained RAFT-Stereo on our

hardware platform, following the optimal settings in their

official repositories and original papers. Tab.c depicts the

comparison results of RAFT-Stereo reported from the orig-

inal paper and re-trained in Table 3. The re-trained model

of RAFT-Stereo performs better on KITTI-15, but worse on

ETH3D and Middlebury than the original one.

Table c: Comparison of the results of RAFT-Stereo conducted by

re-training or from the original paper.

Methods ETH3D KITTI-15 Middlebury (Full)

RAFT-Stereo (origin) 3.3 5.7 18.3

RAFT-Stereo (re-train) 7.8 5.5 21.6

CREStereo++ (ours) 4.4 5.2 14.8

F. Ablation Study

We also conduct an ablation study on the uncertainty

module. We replace the uncertainty module with a di-

rect convolution architecture and keep the other settings

the same. As can be seen from Tab.d, using uncertainty

guided operation outperforms the method using direct con-

volutions.

Table d: Ablation study on uncertainty module on Middlebury and

ETH3D.

Method
Middlebury (Full) ETH3D

Bad 2.0 AvgErr Bad 1.0 AvgErr

Direct CNN 3.72 0.88 0.91 0.15

Uncertainty 3.07 0.85 0.88 0.14

G. Robustness Evaluation

Table e and Table f illustrate detailed results on aspect of

bad 0.5, bad 1.0, bad 2.0, bad 4.0, average error (AvgErr),

Root Mean Square Error (RMSE), A50, A90, A95, and

A99 on Middlebury and ETH3D datasets, respectively. All

methods are evaluated on three real-world public bench-

marks with the same set of model parameters. Specifically,

as can be seen from the tables, our method achieves the best

overall performance, with all (ten) items of data ranking 1st

on Middlebury and eight items ranking 1st on ETH3D.

H. Visualization Results
Fig. 1 and Fig. 2 present more visualization results of

our method and existing SoTA methods on Middlebury

dataset. Fig. 3 and Fig. 4 show the results on ETH3D and

KITTI2015, respectively. All methods are tested on these

three datasets with a single trained fixed model. Our method

still achieves the best visualization results on all three

datasets, also surpassing the robust methods, RaftStereo[7],

AANet[9], and CFNet[6], such as the leafs in first row of

Fig. 1, the table-tennis table in the second line of Fig. 3 and

the sky in the second line of Fig. 4.
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Table e: Robustness comparison among Middlebury testset with existing SOTA methods in RVC. All methods are tested with a single

trained fixed model. The overall rank is obtained by Schulze Proportional Ranking [5] to combine multiple rankings into one. Our

approach achieves the best overall performance.

Method
Middlebury

bad 0.5 bad 1.0 bad 2.0 bad 4.0 AvgErr RMSE A50 A90 A95 A99

AANet RVC [9] 60.9 42.9 31.8 25.8 12.8 32.8 1.16 41.4 81.5 142.0

CVANet RVC 77.2 58.5 38.5 23.1 8.64 25.9 1.52 22.2 48.6 124.0

GANet RVC [11] 66.1 43.1 24.9 16.3 15.8 42.0 0.95 50.9 83.8 194.0

HSMNet RVC [10] 55.3 31.2 16.5 9.68 3.44 13.4 0.62 4.26 17.6 63.8

MaskLacGwcNet RVC [1] 57.6 31.3 15.8 10.3 13.5 46.6 0.68 51.0 109.0 197.0

GEStereo RVC 42.5 22.8 14.1 9.51 3.78 15.5 0.47 4.75 18.8 83.7

CroCo RVC 55.3 32.9 19.7 12.2 5.14 16.4 0.73 14.5 29.3 72.4

NLCANet V2 RVC [4] 52.8 29.4 16.4 10.3 5.60 21.9 0.58 8.85 35.0 113.0

CFNet RVC [6] 48.7 26.2 16.1 11.3 5.07 18.2 0.53 8.37 34.7 88.1

iRaftStereo RVC [3] 47.8 24.0 13.3 8.02 2.90 12.2 0.50 3.21 13.3 59.2

raft+ RVC [7] 44.3 22.6 14.4 10.5 3.86 15.2 0.48 6.14 18.1 80.8

CREStereo++ RVC (ours) 36.5 16.5 9.46 6.25 2.20 10.4 0.33 1.95 6.84 52.7

Table f: Robustness comparison among ETH3D testset with existing SOTA methods in RVC. All methods are tested with a single trained

fixed model. The overall rank is obtained by Schulze Proportional Ranking [5] to combine multiple rankings into one. Our approach

achieves the best overall performance.

Method
ETH3D

bad 0.5 bad 1.0 bad 2.0 bad 4.0 AvgErr RMSE A50 A90 A95 A99

AANet RVC [9] 13.75 5.41 1.95 0.94 0.33 0.79 0.16 0.59 1.22 3.70

CVANet RVC 13.70 4.58 1.32 0.60 0.32 0.83 0.18 0.59 1.08 3.20

GANet RVC [11] 26.12 6.97 1.25 0.63 0.45 0.81 0.31 0.82 1.11 3.45

HSMNet RVC [10] 11.37 4.40 1.51 0.57 0.28 0.70 0.14 0.55 0.91 3.02

MaskLacGwcNet RVC [1] 17.56 6.42 1.88 0.56 0.38 0.84 0.22 0.71 1.17 3.77

GEStereo RVC 13.23 3.95 1.25 0.52 0.29 0.61 0.17 0.56 0.93 2.66

CroCo RVC 6.98 1.54 0.50 0.17 0.21 0.45 0.13 0.42 0.59 2.00

NLCANet V2 RVC [4] 12.58 4.11 1.20 0.45 0.29 0.62 0.17 0.55 0.84 2.76

CFNet RVC [6] 10.46 3.70 0.97 0.40 0.26 0.60 0.14 0.50 0.78 2.87

iRaftStereo RVC [3] 5.06 1.88 0.55 0.24 0.17 0.47 0.10 0.33 0.49 1.70
raft+ RVC [7] 7.10 2.18 0.71 0.35 0.21 0.62 0.11 0.38 0.56 3.46

CREStereo++ RVC (ours) 4.83 1.70 0.37 0.15 0.16 0.38 0.08 0.32 0.49 1.98



Left image Ours RaftStereo AANet CFNet

Bad2.0=9.33% Bad2.0=15.3% Bad2.0=17.3%Bad2.0=42.7%

Bad2.0=11.1% Bad2.0=15.0% Bad2.0=16.6%Bad2.0=31.8%

Bad2.0=9.23% Bad2.0=15.9% Bad2.0=19.6%Bad2.0=30.1%

Figure 1: Visual and quantitative comparisons between our method and other state-of-the-art methods for robust stereo matching on

Middlebury dataset. All results from one method are directly predicted by a single model with the same set of parameters without any

fine-tuning or adaption. Our results outperform others both in accuracy and details.

Left image Ours RaftStereo AANet CFNet
Bad2.0=6.60% Bad2.0=16.2%Bad2.0=25.6%Bad2.0=11.2%

Bad2.0=6.55% Bad2.0=7.73% Bad2.0=9.76%Bad2.0=16.7%

Bad2.0=3.50% Bad2.0=5.69%Bad2.0=6.55% Bad2.0=9.63%

Figure 2: Visual and quantitative comparisons between our method and other state-of-the-art methods for robust stereo matching on

Middlebury dataset. All results from one method are directly predicted by a single model with the same set of parameters without any

fine-tuning or adaption. Our results outperform others both in accuracy and details.
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Figure 3: Visual and quantitative comparisons between our method and other state-of-the-art methods for robust stereo matching on ETH3D

dataset. All results from one method are directly predicted by a single model with the same set of parameters without any fine-tuning or

adaption. Our results outperform others both in accuracy and details
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D1_all=1.32%

D1_all=1.99%

D1_all=1.71%

D1_all=1.56%

D1_all=2.68%

D1_all=3.10%
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Figure 4: Visual and quantitative comparisons between our method and other state-of-the-art methods for robust stereo matching on

KITTI2015 dataset. All results from one method are directly predicted by a single model with the same set of parameters without any

fine-tuning or adaption. Our results outperform others both in accuracy and details.


