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1. Occupancy mapping details
Assuming a static world, the occupancy mapping algo-

rithm [15] divides the 3D space into voxels. The occupancy
of a voxel mijk is a binary variable where mijk = 1 indi-
cates the voxel is close to a surface and mijk = 0 other-
wise. The probability of a voxel being occupied p(mijk) is
approximated by the posterior probability given a stream of
depth images D and its corresponding camera projection P.
A voxel is considered occupied if p(mijk) > 0.5, i.e., the
log-odds l(mijk) > 0. Algorithm 1 provides the pseudo-
code for the occupancy mapping algorithm.

Figure 1 illustrates the inverse sensor model for an ex-
ample 3D point xijk observed from two different views. In
one view, the 3D point is closer to the corresponding es-
timated depth, resulting in a higher probability of 0.6. In
the other view, the 3D point is more distant from the esti-
mated depth, resulting in a lower probability of 0.3. Given
these two depth estimations, the integrated probability in
log-odds notation l(mijk) is approximately −0.8 following
Algorithm 1. The voxel is therefore considered not close to
a surface given the information so far.

Algorithm 1 Occupancy Mapping Algorithm
for all voxels ijk do

l(mijk)← 0 ▷ Initialization
end for
σ ← 8 voxel size
while receiving D(k),P(k) for keyframe k do

for all voxels ijk do
if voxel ijk in frustrum of view k then

u, v, z ← P(k)xijk ▷ Projection
µ = D(k)

uv

p(mijk|z)← N (z|µ,σ2)
N (µ|µ,σ2)

l(mijk)← l(mijk) + log
p(mijk|z)

1−p(mijk|z)
end if
mijk ← l(mijk) > 0 ▷ Output Occupancy

end for
end while

𝑑(2)𝑝 𝒎𝑖𝑗𝑘 𝑧(1) = 0.6𝑝 𝒎𝑖𝑗𝑘 𝑧(2) = 0.3
O1

O2

Figure 1. Example of the occupancy probability model. Given
the distance to the camera center z(k) and the corresponding
monocular depth estimation d(k), the occupancy probability of
a voxel p(m) = 1 if z(k) = d(k) and drops gradually to 0
when z(k) moves away from d(k). The probabilities from mul-
tiple views are integrated following the occupancy grid mapping
(Algorithm 1) [15].

2. Reproducibility

Architectures. DG-Recon follows the same architecture
as NeuralRecon [23] with a MnasNet [24] feature extractor
and a SPVCNN [25] TSDF regressor which operates on 3
different scales with image feature sizes 120×160, 60×80,
30×40 and voxel sizes 4, 8, and 16cm respectively. The
image feature dimensions are (24, 40, 80) for the three dif-
ferent scales and the volumetric feature dimensions are (28,
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44, 84). Compared to the image features, the 4 additional
dimensions in the volumetric features are for the geometry
features.

The cross-attention-based fusion model is composed of
4 layers of Transformer decoders [26] without the self-
attention layers. The number of heads for the multi-head
attention is set to 4. The fusion also operates on three differ-
ent scales with token dimensions (28, 44, 84) respectively
from high resolution to low resolution. The dimensions of
the feed forward layers are set to be (32, 64, 128) for the
three corresponding scales. The initial query tokens are ini-
tialized with 1s and optimized through back-propagation.

The depth model consists of a ResNet34 [10] encoders
and a convolutional decoder [19]. The decoder resembles
features from four different scales of the ResNet34 back-
bone, varying from the conv1 block to the conv4 block. The
number of decoder features is set to 128. The network pre-
dicts the inverse depth clipped between 0.1 and 10. A sparse
inverse depth image, rendered from the sparse reconstruc-
tions, is concatenated to the RGB images as the inputs to
the ResNet34 encoder. The pixels missing depth values (a
vast majority in sparse depth input) are set to 0.

Hyperparameters. DG-Recon was trained 30 epochs
using the Adam optimizer [11] on a single NVIDIA A100
with batch size 12. The learning rate was set to 1e-3 and
was reduced by a factor of 2 every 12 epochs. The other
training hyperparameters were kept the same as [23]. The
depth model was trained with the Adam optimizer [11] for
30 epochs at a learning rate of 5e-5. The learning rate de-
cays by 0.1 every 20 epochs. The training was executed
on a single NVIDIA A100 GPU with batch size 16. The
backbones (MnasNet and ResNet34) were initialized with
ImageNet [4] pre-trained weights. The other weights were
initialized randomly with the PyTorch [18] default uniform
initializers, i.e. [13] for convolutional and feed-forward lay-
ers, and [9] for multi-head attention. All the inferences were
executed on a single 11GB NVIDIA RTX 2080Ti GPU with
batch size 1.

Visibility mask. Similar to [1, 22], visibility masks were
applied during training and evaluating DG-Recon. The vis-
ibility mask was obtained by integrating the ground truth
depth from all frames. A voxel is considered invisible if it
has not been observed from any view, i.e., is out-of-frustum
or is occluded. Occlusion is determined if the voxel is 12cm
behind a surface indicated by the ground truth depths.

Marching Cubes. To obtain meshes from sparse TSDF
volumes of DG-Recon, the marching cubes algorithm [14]
was applied to extract surfaces at the zero level set. Note
that the non-activated voxels in the sparse TSDF volumes
are filled with 1s by default, indicating empty spaces.
Naively running marching cubes would result in double-
layer surfaces for walls, ceilings, and floors as also reported
by [23]. Although the double-layer surfaces do not affect

DG-Recon much in the evaluation because the second lay-
ers are often masked out by the visibility mask, it might
be desirable to extract single-layer surfaces for many appli-
cations. That can be done in real-time by providing addi-
tional masks to marching cubes where the mask finds sharp
transitions between -1 and 1. This method is built upon
the observations that the TSDF values for desired surfaces
transit smoothly around zeros whereas the TSDF values for
undesired surfaces transit abruptly from -1 (activated vox-
els predicted to be behind the surface) to 1 (non-activated
voxels). All the qualitative analyses were conducted with
single-layer meshes extracted this way.

Sparse depth. The depth model of DG-Recon takes
the sparse depths from the 6-degree-of-freedom localiza-
tion pipeline as input. Because all three datasets did not
dump the sparse depth images when running such pipelines
[3, 17], we prepare the sparse depths ourselves using
COLMAP [20]. More specifically, we feed the keyframes
selected by [23] with the corresponding camera poses to
COLMAP for keypoints extraction, keypoints matching,
and point triangulation. The result sparse point clouds are
then projected to the perspective view to get sparse depths
for the selected keyframes. The sequential matching mode
was used in this process and all the hyperparameters were
kept default.

7-Scenes. Evaluation on 7-Scenes [8] is challenging,
particularly because the camera and the depth sensor were
not calibrated. We used the factory default calibrations for
both sensors. The principle point was set to (320, 240) for
both sensors and the focal length was set to (525, 525) for
the camera and (585, 585) for the depth sensor. Because the
Kinect camera has a different focal length from the camera
used in ScanNet, the RGB images were resampled using the
ScanNet camera intrinsic before feeding to DG-Recon and
the other SOTA methods. Because the z-axis in the world
coordinates of ScanNet points upwards, the world coordi-
nates of 7-Scenes were rotated accordingly to match that.
The ground truth meshes were reconstructed using the raw
depth images, which were found empirically to be consis-
tent with the official TSDF ground truth. Visibility masks
were created and applied in the evaluation similar to the
ScanNet experiments.

SUN3D. Evaluation on SUN3D [27] is in general sim-
ilar to the evaluation of 7-Scenes. The RGB images were
resampled and the world coordinates system was rotated to
make the z-axis point upwards. The only difference is that
the camera and the depth sensor were both calibrated with
principle point (320, 240) and focal length (570, 570).

3. Metrics Definition

The definitions of the 3D reconstruction metrics [16]
are as follows.



• Accuracy error (Acc): the average distance (cm) from
the vertices p in the predicted mesh P to the closest
vertex p∗ in the ground truth mesh P ∗

1

NP

∑
p∈P

min
p∗∈P∗

∥p− p∗∥ (1)

where NP is the number of vertices in the predicted
mesh.

• Completeness error (Comp): the average distance (cm)
from the ground truth vertices to the closest predicted
vertex

1

NP∗

∑
p∗∈P∗

min
p∈P
∥p− p∗∥ (2)

where NP∗ is the number of vertices in the ground
truth mesh.

• Chamfer distance: the average of the point-to-point
distance (cm) from prediction to ground truth and from
ground truth to prediction

1

2
(Acc + Comp) (3)

• Precision (Prec): percentage of predicted vertices
found ground-truth vertices within the radius of 5cm

1

NP

∑
p∈P

( min
p∗∈P∗

∥p− p∗∥ < 5cm) (4)

• Recall (Rec): percentage of ground-truth points with
corresponding predicted points within the radius of
5cm

1

NP∗

∑
p∗∈P∗

(min
p∈P
∥p− p∗∥ < 5cm) (5)

• F-score: the harmonic mean of precision and recall

2× Prec× Rec
Prec + Rec

(6)

The definitions of the depth rendering metrics [16] are
as follows.

• Abs Diff : average of the absolute difference between
the rendered depth d and the ground truth depth d∗

1

n

∑
d∈D

|d− d∗| (7)

where n is the number of valid pixels with d > 0 and
d∗ > 0

• Abs Rel: average of the absolute difference relative to
the ground truth depth

1

n

∑
d∈D

|d− d∗|/d∗ (8)

• Sq Rel: average of the squared distance relative to the
ground truth depth

1

n

∑
d∈D

|d− d∗|2/d∗ (9)

• δ < 1 .25 : the percentage of pixels with the maximum
distance ratio smaller than 1.25

1

n

∑
d∈D

(max(
d

d∗
,
d∗

d
) < 1.25) (10)

• Comp2D: the percentage of valid depth from the ren-
dered depth images

1

ND

∑
d∈D

(d > 0) (11)

where ND is the number of pixels.

4. More quantitative results
4.1. Comparison to parallel works

Table 1 compares DG-Recon and parallel works for re-
construction performance and runtime efficiency on Scan-
Net. Both CVRecon and FineRecon improve SOTA per-
formance significantly for offline methods. Our best on-
line model DG-Recon (var) is not any more on par with
the best offline counterparts. But both our models still
achieve the best accuracy-efficiency tradeoff among the on-
line methods. DG-Recon (var) runs faster than VisFusion
and achieve higher F-score and lower Chamfer distance.
DG-Recon (c-att) runs slightly slower than VisFusion but
reach remarkably better results in all columns. Both stan-
dard and high-resolution models from Zuo et al. run slower
than DG-Recon and VisFusion. Even though not directly
comparable to ours following protocol [1], their reconstruc-
tion performances were shown slightly lower than VisFu-
sion following protocol [23] (0.572/0.589 vs. 0.598).

4.2. Varying the near-surface margin

Table 2 summarizes the reconstruction results and the
volume sparsity for various choices of the near-surface mar-
gin, ∆. The volume sparsity for the ∆ = 8 model is 80%,
90%, and 96% for the three scales from coarse to fine. As
the margin grow, the feature volume becomes denser. The
∆ = 8 model achieves the best reconstruction scores com-
pared to the models trained with bigger and smaller near-
surface margins.



Method Online FPS↑ Acc. ↓ Comp.↓ Chamfer↓ Precision↑ Recall↑ F-score↑
VoRTX[22] x 2 4.31 7.23 5.77 0.767 0.651 0.703
CVRecon [6] x - 3.8 6.7 5.3 0.794 0.685 0.735
FineRecon [21] x - 5.25 5.11 5.18 0.780 0.734 0.755
VisFusion [7] ✓ 25 4.17 9.05 6.61 0.751 0.580 0.653
Zuo et al. [28] ✓ 13 - - - - - -
Zuo et al. [28] (highres) ✓ 5 - - - - - -
DG-Recon (c-att) ✓ 20 3.94 6.82 5.38 0.769 0.636 0.694
DG-Recon (var) ✓ 34 4.40 6.49 5.44 0.732 0.628 0.674

Table 1. Evaluation of the 3D mesh on the ScanNet test set. Reconstruction results following the same evaluation protocol [1] for parallel
works were taken from the corresponding papers. Frames per second (FPS) were reported by the original authors using similar GPU hard-
ware, RTX 2080 Ti and RTX5000. Red cells mark the best number among the online methods, orange the second best, and yellow the
third best. Mark - denotes not-yet-available measurement.

∆∆∆ Sparsity (%)↑ Acc ↓ Compl ↓ Prec ↑ Rec ↑ F-score ↑
4 90, 95, 98 5.5 7.3 0.713 0.601 0.650
8 80, 90, 96 5.4 7.1 0.718 0.613 0.659
16 68, 80, 92 5.9 7.9 0.679 0.585 0.626

Table 2. Effect of varying the near-surface margin. ∆ is ex-
pressed in the unit of voxel size. The margin shrinks and the spar-
sity increases when going from the coarse scale to the fine scale.
The feature volume sparsity was measured at three different scales
ranging from coarse to fine. The corresponding sparsity is reported
accordingly from left to right.

The reconstruction results were measured on the Scan-
Net validation set. Different from the other ablation studies,
single-layer meshes were produced following [23] and used
in evaluation because the ∆ = 4 model sometimes creates
double layers within the visibility mask.

4.3. Comparing self-attention and cross-attention

Fusion Sparsity (%) Time (ms) ↓ GPU Memory (MB) ↓
cross-attention 0 9.9 260
cross-attention 80 3.4 60
self-attention 0 31.5 490
self-attention 80 7.8 120

Table 3. Comparison of cross-attention and self-attention.
Time and GPU memory were measured on the coarsest scale with
volume size 32x32x32. The number of views was set to 9. The
volume feature dimension was 84 and the feed-forward layer di-
mension was 128. 0% sparsity means the volume is fully occupied
and 80% sparsity means 1/5 of the volume is occupied as measured
using real case examples of ScanNet. All values were measured as
an average of 100 repetitions.

Table 3 compares the cross-attention-based fusion
against the self-attention-based fusion with and without
sparse volume. The cross-attention-based fusion of sparse
features is 10× and 2× faster respectively than the self-
attention-based fusion with dense features [1] and with
sparse features [22]. It consumes only 1/8 and 1/2 of

the GPU memory compared to the dense and sparse self-
attention-based modules. Even without sparsity, cross-
attention-based fusion is 3× faster than self-attention-based
fusion and occupies 50% of the GPU memory. The differ-
ence will be even bigger as the number of views grows. For
example, [22] integrates features from 60 views instead 9
views.

Furthermore, Table 3 also shows that the sparsity intro-
duced by depth-guided feature back projection is beneficial
to the fusion efficiency. The runtime of cross-attention-
based fusion drops from 9.9ms to 3.4ms and the GPU mem-
ory usage drops from 260MB to 60MB.

4.4. Varying distance threshold for evaluation

To expand the F-score evaluation, we also calculate F-
scores at varying distance thresholds on 7Scenes [8]. Fig-
ure 2 shows that DG-Recon outperforms Atlas and Neural-
Recon at all distance thresholds.
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Figure 2. Varying distance threshold on 7Scenes. Note that the
left figure differs from the classification Precision-Recall curve.
The distance threshold does not control model prediction but de-
termines true positives. Both precision and recall grow as distance
threshold increases.



Atlas [16] NeuralRecon [23] DG-Recon Ground truth

Figure 3. Qualitative comparison of reconstructed meshes on 7-Scenes [8]. Each row is a different scene. The red boxes mark over-
smoothed or missing geometry while the light green boxes highlight the improved geometry by DG-Recon.

Atlas [16] NeuralRecon [23] DG-Recon Ground truth

Figure 4. Qualitative comparison of reconstructed meshes on SUN3D [27]. The first row shows a hotel room. The third row gives an
overview of the entire floor from Brown University. The second-row zoom-in to one of the office rooms on that floor.

5. More qualitative results

5.1. Qualitative analysis of 7-Scenes reconstruction

The qualitative comparison of the mesh reconstruction
among Atlas [16], NeuralRecon [23] and DG-Recon on 7-
Scenes [8] is illustrated in Figure 3. DG-Recon outputs ge-
ometry with sharper edges than the other two methods, e.g.,
monitor, desk, and chairs in row 1, the kitchen worktops in

row 2, three heads around the monitor in row 3, and stairs
in row 4. The NeuralRecon baseline produces less com-
plete reconstruction, for example, the cabinet in the kitchen
is missing parts and the stairs are missing the first step.

5.2. Qualitative analysis of SUN3D reconstruction

Figure 4 illustrates how DG-Recon generalizes to the
SUN3D [27] dataset, compared to Atlas [16] and NeuralRe-



Atlas [16] VoRTX [22] NeuralRecon [23] DG-Recon Ground truth

Figure 5. Qualitative analysis of the volumetric 3D reconstruction methods on the test set of ScanNetV2. Reconstruction errors are
highlighted by red boxes and quality shapes are marked by green boxes. Zoom-in views are provided when necessary.

con [23]. DG-Recon consistently produces more complete
reconstruction than the NeuralRecon [23] baseline. At-
las [16] outputs smoother reconstruction for the hotel room
(row 1) but completely fails to reconstruct the office room
(row 2). Moreover, the third row shows the scale of an entire
floor which doesn’t fit into the memory of a single NVIDIA
2080Ti GPU for Atlas. Its reconstruction, therefore, misses
half of the floor. Note that the failure in the second row is
from the non-missing part of the Atlas reconstruction.

5.3. More qualitative analysis on ScanNet

Figure 5 shows more qualitative comparisons for the vol-
umetric reconstruction methods. The worktop (row 1), cab-
inet and bed (row 2) appear sharper than the other methods.
Objects like washing machine (row 3), shelves (row 4) are
either incomplete [23] or distorted [16, 22] while ours show
a better trade-off between completeness and accuracy.

5.4. Qualitative analysis for outdoor scenes

Even though DG-Recon suffers from distribution shift
when generalizing to outdoor scenes like other data-driven
methods, it has potential to partially mitigate this shift

with Open3D with DG-Recon

Figure 6. Outdoor reconstruction example: Horse [12]. Note
that relative depths from Omnidata were scaled with COLMAP
sparse depths to obtain metric depths.

thanks to its modular design i.e. separated depth prior and
TSDF prediction. Figure 6 qualitatively shows notable im-
provement of DG-Recon over Open3D TSDF integration
for an outdoor scene given an off-the-shelf monocular depth
model, Omnidata [5].

5.5. Qualitative analysis of rendered depth

We also provide the example depth rendering from Neu-
ralRecon [23] and DG-Recon in Figure 7. The rendered
depth of NeuralRecon [23] contains more missing values
which might negatively influence the user experience when
rendered virtual objects interact with the scene. DG-Recon
suffers less from missing depth values and outputs more



NeuralRecon [23] DG-Recon Ground truth

Figure 7. Qualitative analysis of rendered depth on Scan-
NetV2 [2]. The color indicates the relative depth ranging from
0 to 1, varying from orange to blue. Dark red indicates missing
depth values.

complete object shapes, e.g., the chair in row 3.
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