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A. Testing Benchmarks
In this paper, we utilize seven datasets with varying levels of domain similarity to ImageNet [21, 17]. Table 5 summarizes

the used datasets, number of classes, number of tasks, number of training, validation, and test images, and domain similarity
to ImageNet on ViT. Furthermore, we introduce two benchmarks with a longer task sequence that includes a relatively large
number of classes to validate the superior performance of DAP on larger or/and longer benchmarks. First of all, for all
benchmarks, we split and utilize 20% of the training set as a validation set for the hyperparameter searches of the comparing
methods and DAP. Also, to estimate the domain similarity, we follow the paper [17] which calculates Earth Mover’s Distance
between two domains. Refer to [17] for the technical details to estimate the domain similarity of nine datasets to ImageNet.

Dataset # Classes # Tasks Train Validation Test Domain Similarity [17]

Split CIFAR-100 100 10 40,000 10,000 10,000 0.491
Split Pets 35 7 2,774 706 3,469 0.470
Split EuroSAT 10 5 16,200 5,400 5,400 0.444
Split RESISC45 45 9 18,900 6,300 6,300 0.432
Split ISIC 6 3 5,940 1,980 1,980 0.409
Split ChestX 6 2 7,252 2,417 2,417 0.390
Split CropDiseases 35 7 34,260 8,566 10,692 0.386

Split ImageNet-R 200 10 18,000 6,000 6,000 0.577
Split DomainNet 345 15/69 96,724 24,182 52,041 0.600

Table 5. Specifications of the various CL benchmarks evaluated.

EuroSAT RESISC45
Figure 6. Image samples of the aerial domain, EuroSAT and RESISC45. Each row displays three samples from the same class.

Here, a description of each benchmark is provided below:

• Natural Domain
1) Split CIFAR-100: It is built by dividing the original CIFAR-100 [12] into 10 tasks with 10 disjoint classes each.



CropDiseases ISIC ChestX
Figure 7. Image samples of the medical domain, CropDiseases, ISIC, and ChestX. Each row displays three samples from the same class.

2) Split Pets: Original Oxford-IIIT Pet data [18] consists of 37 pet categories (dogs and cats) with roughly 200 images
per category. In the case of Oxford-IIIT Pet, because the number of data per category is similar, we drop the last two
categories and configure Split Pets containing 7 tasks of 35 categories.

• Aerial Domain: The two aerial datasets are color images of natural scenes but without perspective distortion. To
help understand the visual characteristics of the aerial domain, we provide representative examples of EuroSAT and
RESISC45 in Figure 6.

3) Split EuroSAT: EuroSAT [8] is a collection of satellite images of the landscapes based on Sentinel-2 satellite im-
ages [15]. It contains categories such as forest, highway, river and so on. Split EuroSAT is built by splitting the original
10 classes into 5 tasks of 2 disjoint classes each.

4) Split RESISC45: RESISC45 [3] is originally built for a remote sensing image scene classification task It contains
45 scene classes, each class having 700 images, such as airport, cloud, island, and so on. Split RESISC45 is built by
splitting the 45 classes into 9 tasks of 5 disjoint classes each.

• Medial Domain: To help understand the visual characteristics of the medical domain, we provide representative
examples of CropDiseases, ISIC, and ChestX in Figure 7.

5) Split CropDiseases: CropDiseases [16] is a collection of diseased plant images, which contains natural images but
is specialized in the medical and agriculture industries. The Cropdiseases dataset originally contains 38 categories.
However, a class imbalance among 38 categories is severe. To relax this imbalance and facilitate task splitting, we
drop the three categories with the smallest number of data in order. Therefore, Split CropDiseases is built by splitting
the 35 classes into 7 tasks of 5 disjoint classes each.

6) Split ISIC: ISIC2018 [4] is dermoscopy images of human skin lesions of 7 categories, which no longer represent
natural images. This dataset also has a fairly severe class imbalance, thus we drop a single category with the smallest
number of data. Then, Split ISIC is built by splitting the 6 classes into 3 tasks of 2 disjoint classes each.

7) Split ChestX: ChestX [23] is a collection of X-Ray images of the diseased human chest. ChestX consists of gray
images of 8 categories. However, considering the inherent difficulty and severe class imbalance of this dataset, we split
it into 2 tasks of 3 disjoint classes by dropping the two categories with the largest and smallest number of data.

• Large Benchmarks: Moreover, we include two benchmarks that contain a substantial number of classes to demon-
strate the robustness of DAP in handling large benchmarks.

8) Split ImageNet-R: ImageNet-R [9] is a collection of images of 200 ImageNet classes. It contains a type of art,
graffiti, origami, paintings, sketches, etc. As depicted in Table 5, this benchmark is derived from the 200 original
ImageNet classes that are used for pre-training ViT. As a result, its domain similarity to ImageNet is considerably
high. We include this benchmark not to evaluate domain scalability, but rather to assess dataset size scalability. Split
ImageNet-R is created by dividing the 200 classes into 10 tasks, with each task containing 20 disjoint classes.

9) Split DomainNet: DomainNet [19] is a dataset composed of images from 6 distinct types, consisting of a total of
345 categories. We utilize only real-type images to build Split DomainNet. To assess robustness in large classes and



long horizons, Split DomainNet is utilized in two experiments where 345 classes are split into 15 or 69 tasks, with each
tack containing 23 or 5 disjoint classes, respectively.

B. Details of Comparing Methods
To verify the relative effectiveness of all methods, we also contain FT-seq, the naive sequential training (i.e, lower-bound),

and Upper-bound, the supervised joint-finetuning on the data of all tasks.
EWC [11] is one of the representative algorithms in continual learning to avoid catastrophic forgetting. This method

regularizes the weights of the model based on its fisher information. For a fair comparison, the weights of the model start
from the weights of the ImageNet pre-trained model. LwF [13] is the algorithm that utilizes the distillation loss for preventing
catastrophic forgetting. This method is also well-known as the baseline in continual learning like EWC, and we set the
model to start from ImageNet pre-trained weights for a fair comparison. L2P [26] firstly proposes a prompt-based method in
continual learning. It focuses on the shared prompt pool for adapting incoming sequential tasks using a pre-trained model,
which is the same pre-trained model in our method for a fair comparison. DualPrompt [25] proposes another prompt-based
method. Unlike L2P, this method maintains two types of prompts with different objectives: namely task-invariant and task-
agnostic. Currently, it is the state-of-the-art prompt-based method in continual learning. We use the same pre-trained model
for a fair comparison. Also, because the main method of DualPrompt is prefix tuning, all the reported results of DualPrompt
are obtained with prefix tuning.

C. Hyperparameter Search Space of L2P and DualPrompt
Because DAP does not utilize the prompt pool, it is relatively less sensitive to prompt-related hyperparameters than L2P

and DualPrompt. Thus, we train DAP using consistent hyperparameters throughout all benchmarks, regardless of the domain
similarity to ImageNet. However, in the case of L2P and DualPrompt, which utilize the prompt pool, their performance
largely relies on the choice of prompt pool size, selection size, and prompt length. Therefore, for a fair comparison of various
benchmarks, we create the hyperparameter search space based on the prompt-related hyperparameters proposed in L2P and
DualPropmt as follows:

1. L2P

• Prompt pool size: [10, 20]

• Prompt top K: [1, 4]

• Prompt length: [5, 10, 20]

• Diversifying prompt-selection: [True, False]

2. DualPrompt

• G-prompt length: [5, 10, 20]

• E-prompt pool size: [10, 20]

• E-prompt top K: [1, 4]

• E-prompt length: [5, 10, 20]

In the search space, we conduct a grid search to find the set of prompt-related hyperparameters showing the best performance
on each benchmark of various domains. Then, we report the obtained best performance in Table 1 as L2P† and DualPrompt†.
Here, we summarize the set of prompt-related hyperparameters used to obtain the results in Table 1 as follows:

1. L2P

• Split Pets, Split EuroSAT, Split RESISC45

– Prompt pool size: 10
– Prompt top K: 1
– Prompt length: 10
– Diversifying prompt-selection: True

• Split CropDiseases, Split ISIC



– Prompt pool size: 10
– Prompt top K: 1
– Prompt length: 20
– Diversifying prompt-selection: True

• Split ChestX

– Prompt pool size: 10
– Prompt top K: 4
– Prompt length: 10
– Diversifying prompt-selection: True

2. DualPrompt

• Split Pets

– G-prompt length: 5
– E-prompt pool size: 10
– E-prompt top K: 1
– E-prompt length: 5

• Split EuroSAT, Split RESISC45, Split CropDiseases

– G-prompt length: 20
– E-prompt pool size: 10
– E-prompt top K: 1
– E-prompt length: 20

• Split ISIC

– G-prompt length: 20
– E-prompt pool size: 20
– E-prompt top K: 4
– E-prompt length: 10

• Split ChestX

– G-prompt length: 20
– E-prompt pool size: 10
– E-prompt top K: 4
– E-prompt length: 20

D. Evaluation Metrics
• Average accuracy [14]. It is the average accuracy of all the tasks after the model is trained on the last task T , and it is

commonly utilized in the continual learning community. It can be formulated as follows:

Avg Acc = aT where ai =
1

i

i∑
j=1

ai,j ,

where ai,j is the accuracy evaluated on the test set of the j-th task when model is trained til i-th task.

• Forgetting measure [1]. It can be defined as the difference between the maximum knowledge from the previous tasks
and the knowledge in the current task. As such, we can calculate the estimate of how much the model forgot the
knowledge of the previous task j when given current task k (k > j), and the metric can be formulated as follows:

Forgetting =
1

T − 1

T−1∑
j=1

fT
j where fk

j = max
l∈{1,2,..,k−1}

al,j − ak,j .



• Learning accuracy [20]. It focuses on how much the model can learn new knowledge of new tasks. As such, it can
be calculated as the average accuracy of each task right after the model is trained on the incoming tasks, and it can be
formulated as Lrn Acc = 1

T

∑T
j=1 aj,j .

• Total average accuracy [5, 24]. To validate the performance of the method on various datasets, we take an average
of Avg Acc of all domains. It can be formulated as Tot Avg Acc = 1

|D|aTi
, where Ti is the number of tasks of the

domain Di. Total Forgetting and Total Lrn Acc can be defined in the same way using each own forgetting and learning
accuracy. In this paper, we use |D| = 7.

E. Additional Experiments

Method Split CIFAR-100 Split EuroSAT Split CropDiseases
Avg. Acc (↑) Forgetting (↓) Lrn. Acc (↑) Avg. Acc (↑) Forgetting (↓) Lrn. Acc (↑) Avg. Acc (↑) Forgetting (↓) Lrn. Acc (↑)

L2P 81.09±1.15 9.12±0.50 89.30±0.71 37.85±5.30 54.35±9.54 81.36±2.35 53.40±3.54 28.76±2.83 80.77±2.12
DualPrompt 83.25±1.87 7.72±0.88 89.61±0.58 69.74±1.05 20.53±3.20 86.15±1.49 76.31±1.88 10.00±2.69 83.84±1.05
DAP 83.26±1.37 8.27±1.30 90.71±1.58 72.32±2.79 11.56±5.87 82.44±4.80 82.70±2.74 7.97±1.94 87.50±3.34

Matching Acc of DAP 71.86±3.20 68.40±0.91 73.16±0.73

Table 6. Results on class-incremental learning in an instance-wise setup and matching accuracy on same benchmarks.

In accordance with the evaluation setups of L2P and DualPrompt’s official code1, we assess performance in both batch-
wise and instance-wise prompt setups. The main setup in L2P and DualPrompt is batch-wise, but we also examine the
instance-wise setup. After analyzing the official code of L2P and DualPrompt, we note that the key difference between the
two setups lies in the selection of prompts for instances in a batch. In the former, a single prompt is chosen for the entire
batch, while in the latter, prompts are selected on a per-instance basis.

As shown in Table 6 above, in the instance-wise setup, the performance of L2P, DualPrompt, and DAP becomes lower
compared to the batch-wise setup. This can be attributed primarily to imprecise prompt selection or generation. Essentially,
as the number of tasks increases, L2P tends to choose a prompt that is different from the one required to make an accurate
prediction for each instance among the shared prompts. For both DualPrompt and DAP, it becomes challenging to estimate
the correct task-specific key. As demonstrated in Table 6, DAP exhibits superior performance compared to the other methods,
despite not having a high matching accuracy. This superiority can be attributed to several factors. Firstly, the instance-level
prompt generated by MLP with the transposed input provides fine-grained instructions that are tailored to the relationship be-
tween each input patch, regardless of task information. That is, the encoded information within the prompts is still beneficial
for prediction. Secondly, the task-specific key is estimated by conditioning on the input instance features. This implies that
even if the estimated task-specific key is incorrect, it would still be the one with the highest similarity to the ground-truth
task. As a result, the adaptive prompt that is generated is likely to contain useful instructions for prediction.

In the case of an instance-wise setup, it requires more hyperparameter searches to find a solid set of hyperparameters.
It showed stable performance in terms of forgetting when appending prompts into the first half of layers as DualPrompt
suggested. Also, applying layer normalization not only at the beginning of prompt generation but also within intermediate
prompts helped enhance learning accuracy (Lrn Acc).

F. Variation in the Number of Training Epochs on MLP

Split Pets Split ISIC

Figure 8. Ablation study on the number of training epochs before freezing the MLP layer and when the MLP keeps updated till the end of
training (⋆). ⋆: no freezing on MLP.

1https://github.com/google-research/l2p/tree/main/configs



To mitigate catastrophic forgetting resulting from a distribution shift, we decide to freeze the MLP layer during training.
The objective of the MLP layer is to extract instance-level domain knowledge from target data, regardless of the task at hand.
Figure 8 depicts the performance of DAP with varying numbers of training epochs on MLP on two benchmarks with different
domain similarity: Split Pet, which is close to ImageNet, and Split ISIC, which is distant enough. The number of training
epochs per task in Split Pet and Split ISIC is 30. Our observations indicate that the performance does not vary much, even if
we do not freeze the MLP layer precisely at the end of the first task.

Moreover, we confirm that DAP shows better performance than DualPrompt even when the MLP layer is not frozen till
the end of training. See the red asterisk in Figure 8 compared to the green line. Specifically, Split ISIC, with relatively
lower domain similarity, experiences a drop of 9.85% due to the MLP layer’s continuous training to steer the pre-trained
representation space. In the case of Split Pet, which has high domain similarity with ImageNet, the absolute performance
drop is very small (3.36%), as the prompt needed to encode from the MLP layer is general enough to cover the benchmark.
As a result, in both cases, DAP still outperforms DualPrompt when the MLP layer is trained until the end.

Avg Acc (↑) At epoch Avg Acc (↑) At epoch

Split Pets 10 20 30 40 Split ISIC 10 20 30 40

Original 89.66±0.75 91.07±0.56 91.02±0.44 89.87±3.53 Original 81.22±1.67 84.07±2.11 84.18±2.54 82.21±4.55
Shuffled class order 89.48±0.88 91.08±0.60 91.11±0.59 89.80±3.33 Shuffled class order 82.01±0.98 84.99±2.78 85.34±2.27 82.90±4.18

Table 7. Additional analysis to confirm the consistent trend on randomly shuffled class order.

In addition, we test whether this trend is maintained on benchmarks built on top of randomly shuffled class order. As
shown in Table 7, we can observe consistent performance on both Split Pets and Split ISIC with the randomly shuffled class
order. This finding demonstrates that our method is robust to variations in class order. Still, we observe that performance
does not vary much even if we do not freeze the MLP layer exactly at the end of the first task.

G. Large number of Classes and Longer Task Sequences

Benchmark L2P DualPrompt DAP (Ours)
Avg Acc (↑) Forgetting (↓) Lrn Acc (↑) Avg Acc (↑) Forgetting(↓) Lrn Acc (↑) Avg Acc (↑) Forgetting(↓) Lrn Acc (↑)

(A) Split ImageNet-R (10 tasks) 60.98±0.70 9.93±0.43 69.23±0.78 68.97±2.87 4.66±2.15 72.85±2.27 70.12±2.24 2.90±2.70 73.24±2.81
(B) Split DomainNet (15 tasks) 80.67±0.85 5.33±0.87 85.14±0.99 81.89±0.63 5.21±1.17 87.27±1.80 83.51±1.07 5.30±0.52 88.77±0.79
(C) Split DomainNet (69 tasks) 77.28±0.80 9.70±0.72 86.59±0.74 79.44±1.12 7.91±0.60 87.35±1.03 83.36±0.81 6.75±1.72 90.50±0.74

Table 8. Results on benchmarks with a large number of classes and longer task sequences.

To expand the impact of DAP, we evaluate its performance on benchmarks that entail a large number of classes and longer
task sequences. Initially, this study primarily focuses on proposing a domain-adaptive prompt-based CL method. However,
we also compare its performance with that of Split ImageNet-R [25], as this is a key benchmark proposed in DualPrompt.
ImageNet-R [9] comprises of a collection of images with diverse styles for 200 classes out of the 1,000 classes in ImageNet.
In experiments, DAP shows a notable improvement over L2P and DualPrompt (Row (A) of Table 8). We summarize the
detailed specifications for Split ImageNet-R in Supp. A. Experimentally, the utilization of SGD yielded favorable outcomes
in terms of learning accuracy (Lrn Acc) on Split ImageNet-R. Excluding prompt insertion in the final (12th) layer, rather than
inserting prompts in all layers, also helped enhance stability in performance.

To address the possible concern that DAP might be only effective on benchmarks with a small number of classes and short
task sequences, we compare the performance on Split DomainNet [19] which consists of 345 classes split into 15 tasks (23
classes) or 69 tasks (5 classes). As shown in rows (B) and (C) of Table 8, DAP maintains its superiority on Split DomainNet.
DAP consistently outperforms on more complex benchmarks with a longer horizon.

H. Structural Similarity to Hypernetworks
The proposed adaptive prompt generator exhibits certain structural similarities with hypernetworks [6], also known as

weight generators that are conditioned on an input instance or a task embedding. Similar to our prompt generator, hy-
pernetworks also generate learnable weights. However, while hypernetworks generate the parameters of the model, our
prompt generator generates input tokens that provide instructions for effectively utilizing the pre-trained representation space.



Split CIFAR-100 Buffer Avg Acc (↑) Forgetting (↓) Lrn Acc (↑)

HNET [22] O 42.07±1.19 5.32±3.04 46.86±3.04
DAP X 94.05±1.19 2.28±0.96 96.37±0.74

Table 9. Comparison results of HNET and DAP on Split
CIFAR-100.

To validate the effectiveness of our approach, we compare the
performance of a representative hypernetwork-based continual
learning method [22] on Split CIFAR-100. However, because
HNET [22] is an architecture-based method based on model
weight generation, it is not feasible to migrate the proposed
method and structure to pre-trained transformer-based models.
For a relatively fair comparison, we instead allow a rehearsal-based approach for HNET (with a buffer size of 1000). How-
ever, as shown in Table 9, DAP outperforms HNET by a significant margin.

Conceptually, our prompt generator can be classified as a type of generative model. However, it is the first prompt-
generation approach that utilizes a generative model to create an instance-level prompt for each input instance.

I. Limitation and Discussion
We present a novel prompt-based CL method named DAP, which successfully resolves the domain scalability problem of

current prompt-based CL methods. However, implementing DAP to various pre-trained models requires additional consider-
ations due to the inherent characteristics of each model. For example, self-supervised models being pre-trained on ImageNet
with ViTs such as MAE [7] and MoCo v3 [2] may not have a feature representation space sufficient to make a correct pre-
diction on the benchmark distant from ImageNet by only relying on instructions from the prompt [10]. However, to tackle
the domain scalability problem in the same (fair) setting, we first had to follow the choice of the pre-trained model of current
prompt-based CL methods. Thus, the analysis of DAP with different pre-trained models is lacking. Since the motivation of
this work is to address the domain scalability of the prompt-based CL methods, we decide to delve into the role and impact
of various pre-trained models on prompt-based CL as future work.

As an alternative for generating domain-adaptive prompts, a multi-head attention module can be used instead of MLP with
input transpose to obtain the global relation of input patch tokens. However, in this case, additional ideas such as pooling
or a selection module are needed because directly generating the prompts as desired length is impossible. Instead of LT, it is
possible to train a prompt mask based on the estimated key.

J. Potential Negative Social Impact
It is relatively unlikely that the dataset and problem covered by CL become potential harms to a specific social community.

Also, since the prompt-based CL methods do not require heavy GPU computation, potential environmental negative impacts
will be insignificant. However, different from conventional CL benchmarks, this work also deals with the generalization
performance on benchmarks of specialized domains. Our testing benchmarks contain not only the natural domain but also
the aerial and medical domains. These two domains can have a relatively high ethical standard. By noting it, we utilize
commonly used public data of aerial and medical domains. In the case of ISIC and ChestX, belonging to the medical domain,
personal identity is hidden and cannot be specified.
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