Essential Matrix Estimation using Convex Relaxations in Orthogonal Space Supplementary Material

Arman Karimian
Boston University
armandok@bu.edu

Roberto Tron
Boston University
tron@bu.edu

1. Extended Quintessential Manifold $\mathfrak{Q}(r)$

1.1. Projection on Tangent Space

Lemma 1. Projection on the tangent space of the Extended Quintessential manifold is given by:

$$
\begin{align*}
\tilde{\mathbf{Z}} & =\mathbf{Z}-\mathbf{V} \operatorname{sym}\left(\mathbf{V}^{\top} \mathbf{Z}\right) \\
\operatorname{Proj}_{\mathbf{V}}(\mathbf{Z}) & =\tilde{\mathbf{Z}}-\frac{\left\langle\mathbf{V}_{t}, \tilde{\mathbf{Z}}_{t}\right\rangle}{1-\left\|\mathbf{V}_{t}^{\top} \mathbf{V}_{t}\right\|_{\mathbf{F}}^{2}}\left(\mathbf{I}_{4 r}-\mathbf{V} \mathbf{V}^{\top}\right) \mathbf{G} \mathbf{V} \tag{1}
\end{align*}
$$

where $\mathbf{G} \doteq \mathbf{I}_{r} \otimes\left(\mathbf{e}_{4} \mathbf{e}_{4}^{\boldsymbol{T}}\right)$.
Proof. Since $\mathfrak{Q}(r)$ is a Riemannian submanifold, the orthogonal projection of the Euclidean gradient gives its Riemannian gradient. Therefore, we want to find the matrix $\boldsymbol{\Delta}$ such that $\operatorname{Proj}_{\mathbf{V}}(\mathbf{Z})=\mathbf{Z}+\boldsymbol{\Delta}$ such that $\|\boldsymbol{\Delta}\|_{\mathrm{F}}^{2}$ is minimal. If we denote the orthogonal complement of \mathbf{V} by $\mathbf{V}_{\perp} \in \operatorname{St}(4 r-3,4 r)$, then the $4 r \times 4 r$ matrix $\left[\begin{array}{ll}\mathbf{V} & \left.\mathbf{V}_{\perp}\right]\end{array}\right]$ is in $\mathrm{O}(4 r)$. Using this, we can write $\boldsymbol{\Delta}$ as $\boldsymbol{\Delta}=\mathbf{V S}+\mathbf{V K}+\mathbf{V}_{\perp} \mathbf{L}$ for some symmetric and skewsymmetric matrices \mathbf{S}, \mathbf{K} and some arbitrary matrix \mathbf{L}. One can show that $\|\boldsymbol{\Delta}\|_{\mathrm{F}}^{2}=\|\mathbf{S}\|_{\mathrm{F}}^{2}+\|\mathbf{K}\|_{\mathrm{F}}^{2}+\|\mathbf{L}\|_{\mathrm{F}}^{2}$.
First, we need $\mathbf{V}^{\top}(\mathbf{Z}+\boldsymbol{\Delta})$ to be skew-symmetric, leading to $\operatorname{sym}\left(\mathbf{V}^{\top} \mathbf{Z}+\mathbf{S}+\mathbf{K}\right)=\mathbf{0}$, due to $\mathbf{V}^{\top} \mathbf{V}_{\perp}=\mathbf{0}$. Also, we have $\operatorname{sym}(\mathbf{S})=\mathbf{S}$ and $\operatorname{sym}(\mathbf{K})=\mathbf{0}$, yielding $\mathbf{S}=-\operatorname{sym}\left(\mathbf{V}^{\top} \mathbf{Z}\right)$. This gives us $\tilde{\mathbf{Z}}$ once we substitute \mathbf{S} back in Δ.
For the second constraint, we want $\left\langle\mathbf{Z}_{t}+\boldsymbol{\Delta}_{t}, \mathbf{V}_{t}\right\rangle$ to be zero, i.e., $\left\langle\mathbf{G}, \tilde{\mathbf{Z}} \mathbf{V}^{\top}+\mathbf{V K} \mathbf{V}^{\top}+\mathbf{V}_{\perp} \mathbf{L} \mathbf{V}^{\top}\right\rangle=0$. Since \mathbf{G} is symmetric and $\mathbf{V K V}^{\top}$ is skew-symmetric, their inner product is zero. After removing $\mathbf{V K V}^{\top}$ from the constraint, forming the Lagrangian, and taking derivative with respect to \mathbf{L}, we get $2 \mathbf{L}+\lambda \mathbf{V}_{\perp}^{\top} \mathbf{G V}=\mathbf{0}$. Placing this expression for \mathbf{L} into the constraint and making use of the identity $\mathbf{V}_{\perp} \mathbf{V}_{\perp}^{\top}=\mathbf{I}_{4 r}-\mathbf{V} \mathbf{V}^{\top}$ and $\mathbf{G}^{2}=\mathbf{G}$, we find λ to be

$$
\lambda=\frac{2\left\langle\mathbf{G}, \mathbf{V} \tilde{\mathbf{Z}}^{\top}\right\rangle}{\left\langle\mathbf{G}, \mathbf{V} \mathbf{V}^{\top} \mathbf{G} \mathbf{V}_{\perp} \mathbf{V}_{\perp}^{\top}\right\rangle}=\frac{2\left\langle\mathbf{V}_{t}, \tilde{\mathbf{Z}}_{t}\right\rangle}{1-\left\|\mathbf{V}_{t}^{\top} \mathbf{V}_{t}\right\|_{\mathbf{F}}^{2}}
$$

Substituting $\mathbf{L}=-\frac{\lambda}{2} \mathbf{V}_{\perp}^{\top} \mathbf{G V}$ back in $\boldsymbol{\Delta}$, proof becomes complete.

1.2. Random Sampling on $\mathfrak{Q}(r)$

Here, we present the derivations of the formula for finding \mathbf{V}_{E}^{\bullet}, given by the last two terms of the following equations

$$
\begin{align*}
\mathbf{V}_{t}^{\bullet} & =\tilde{\mathbf{V}}_{t}\left\|\tilde{\mathbf{V}}_{t}\right\|_{\mathrm{F}}^{-1} \\
\mathbf{K} & =\left(\mathbf{I}_{3}-\mathbf{V}_{t}^{\bullet \top} \mathbf{V}_{t}^{\bullet}\right)^{\frac{1}{2}} \tag{2}\\
\mathbf{V}_{E}^{\bullet} & =\tilde{\mathbf{V}}_{E} \mathbf{K}\left(\mathbf{K} \tilde{\mathbf{V}}_{E}^{\top} \tilde{\mathbf{V}}_{E} \mathbf{K}\right)^{\frac{\dagger}{2}} \mathbf{K}
\end{align*}
$$

Since a matrix $\mathbf{V}^{\bullet} \in \mathfrak{Q}(r) \subset \operatorname{St}(3,4 r)$, it must satisfy $\mathbf{V}^{\bullet \top} \mathbf{V}^{\bullet}=\mathbf{V}_{t}^{\bullet \top} \mathbf{V}_{t}^{\bullet}+\mathbf{V}_{E}^{\bullet}{ }^{\top} \mathbf{V}_{E}^{\bullet}=\mathbf{I}_{3}$. Using the definition of \mathbf{K}, we need to find \mathbf{V}_{E}^{\bullet} that satisfies $\mathbf{V}_{E}^{\bullet}{ }^{\top} \mathbf{V}_{E}^{\bullet}=\mathbf{K}^{2}$. We intend to find a matrix \mathbf{X} closest to $\tilde{\mathbf{V}}_{E}$ that satisfies this condition, which leads to the following Lagrangian function

$$
\mathcal{L}(\mathbf{X}, \boldsymbol{\Lambda})=\left\|\mathbf{X}-\tilde{\mathbf{V}}_{E}\right\|_{\mathbf{F}}^{2}+\left\langle\boldsymbol{\Lambda}, \mathbf{X}^{\top} \mathbf{X}-\mathbf{K}^{2}\right\rangle
$$

Taking the derivative with respect to \mathbf{X}, we get $\mathbf{X}-\tilde{\mathbf{V}}_{E}+$ $\mathbf{X} \boldsymbol{\Lambda}=\mathbf{0}$ or $\tilde{\mathbf{V}}_{E}=\mathbf{X}\left(\mathbf{I}_{3}+\boldsymbol{\Lambda}\right)$. Multiplying both sides with their transpose and denoting the symmetric $\mathbf{I}_{3}+\boldsymbol{\Lambda}$ by \mathbf{M}, we get $\tilde{\mathbf{V}}_{E}^{\top} \tilde{\mathbf{V}}_{E}=\mathbf{M} \mathbf{K}^{2} \mathbf{M}$. If we multiply both sides of this equality by \mathbf{K}, we get $\mathbf{K} \tilde{\mathbf{V}}_{E}^{\top} \tilde{\mathbf{V}}_{E} \mathbf{K}=(\mathbf{K M K})^{2}$. Solving for \mathbf{M} and using $\mathbf{X}=\tilde{\mathbf{V}}_{E} \mathbf{M}^{\dagger}$, we get the expression for \mathbf{V}_{E}^{\bullet} as given in (2).

1.3. Gradient and Hessian

We can find the Riemannian gradient of $h(\mathbf{V})$ by simply projecting the Euclidean gradient on the tangent space of $\mathfrak{Q}(r)$

$$
\begin{align*}
\operatorname{grad} h(\mathbf{V}) & =\nabla h(\mathbf{V})-\mathbf{V} \operatorname{sym}\left(\mathbf{V}^{\top} \nabla h(\mathbf{V})\right) \\
& -c(\mathbf{V}, \nabla h(\mathbf{V}))\left(\mathbf{I}_{4 r}-\mathbf{V V}^{\boldsymbol{\top}}\right) \mathbf{G} \mathbf{V} \tag{3}
\end{align*}
$$

where

$$
\begin{equation*}
c(\mathbf{V}, \mathbf{F}) \doteq \frac{\left\langle\mathbf{G} \mathbf{V}, \mathbf{F}-\mathbf{V} \operatorname{sym}\left(\mathbf{V}^{\top} \mathbf{F}\right)\right\rangle}{1-\left\|\mathbf{V}_{t}^{\top} \mathbf{V}_{t}\right\|_{\mathbf{F}}^{2}} \tag{4}
\end{equation*}
$$

The projection of the derivative of the gradient vector field gives the Riemannian Hessian. This derivative is given by

$$
\begin{align*}
& \mathrm{D}(\operatorname{grad} h(\mathbf{V}))(\mathbf{V})[\dot{\mathbf{V}}]=\nabla^{2} h(\mathbf{V})[\dot{\mathbf{V}}] \\
& \quad-\dot{\mathbf{V}} \operatorname{sym}\left(\mathbf{V}^{\top} \nabla h(\mathbf{V})\right)-\dot{c}(\cdot) \mathbf{G V} \tag{5}\\
& \quad-c(\cdot)\left(\mathbf{G} \dot{\mathbf{V}}-\dot{\mathbf{V}} \mathbf{V}^{\top} \mathbf{G} \mathbf{V}\right) .
\end{align*}
$$

In the derivations above, we omitted the terms of the form VS with a symmetric \mathbf{S} as these will be removed by the first step of the projection on the tangent space. Now as for the derivative of $c(\cdot)$, if we denote its nominator and denominator by n_{c}, d_{c}, we have

$$
\begin{equation*}
\dot{c}(\mathbf{V}, \nabla h(\mathbf{V}))=\frac{\dot{n}_{c}}{d_{c}}-\frac{n_{c} \dot{d}_{c}}{d_{c}^{2}} \tag{6}
\end{equation*}
$$

and the derivatives of the nominator and denominator are given by

$$
\begin{align*}
\dot{n}_{c} & =\left(\left\langle\mathbf{G} \dot{\mathbf{V}}, \nabla h(\mathbf{V})-\mathbf{V} \operatorname{sym}\left(\mathbf{V}^{\top} \nabla h(\mathbf{V})\right)\right\rangle\right. \\
& +\left\langle\mathbf{G} \mathbf{V}, \nabla^{2} h(\mathbf{V})[\dot{\mathbf{V}}]-\dot{\mathbf{V}} \operatorname{sym}\left(\mathbf{V}^{\top} \nabla h(\mathbf{V})\right)\right. \\
& \left.\left.-\mathbf{V} \operatorname{sym}\left(\dot{\mathbf{V}}^{\top} \nabla h(\mathbf{V})+\mathbf{V}^{\top} \nabla^{2} h(\mathbf{V})[\dot{\mathbf{V}}]\right)\right\rangle\right) \tag{7}\\
\dot{d}_{c} & =-2\left\langle\dot{\mathbf{V}}_{t}^{\top} \mathbf{V}_{t}+\mathbf{V}_{t}^{\top} \dot{\mathbf{V}}_{t}, \mathbf{V}_{t}^{\top} \mathbf{V}_{t}\right\rangle \\
& =-4\left\langle\dot{\mathbf{V}}_{t}^{\top} \mathbf{V}_{t}, \mathbf{V}_{t}^{\top} \mathbf{V}_{t}\right\rangle
\end{align*}
$$

Given these, one can find the Hessian using the projection of $\mathrm{D}(\operatorname{grad} h(\mathbf{V}))$ on the tangent space at \mathbf{V}.

1.4. Certificate Matrix

Given a first-order optimal point $\mathbf{V}^{*}=\ell\left(\mathbf{Y}^{*}\right)$ of the rank-restricted problem, it satisfies $\operatorname{grad} h\left(\mathbf{V}^{*}\right)=\mathbf{0}$ or $\operatorname{grad} g\left(\mathbf{Y}^{*}\right)=\mathbf{0}$. Using the mapping between the two variable arrangements, we can find $\operatorname{grad} g(\mathbf{Y})$ using the projection given in (1) and the expression given in (3)

$$
\begin{equation*}
\operatorname{grad} g(\mathbf{Y})=\ell^{-1}\left(\operatorname{Proj}_{\ell(\mathbf{Y})}(\ell(2 \mathbf{C Y}))\right)=\operatorname{Proj}_{\mathbf{Y}}(2 \mathbf{C Y}) \tag{8}
\end{equation*}
$$

The projection for the \mathbf{Y} arrangement is thus given by

$$
\begin{align*}
\tilde{\mathbf{Z}} & =\mathbf{Z}-\left(\mathbf{M} \otimes \mathbf{I}_{4}\right) \mathbf{Y} \\
\operatorname{Proj}_{\mathbf{Y}}(\mathbf{Z}) & =\tilde{\mathbf{Z}}-\left(\mathbf{I}_{3} \otimes\left(\mathbf{e}_{4} \mathbf{e}_{4}^{\boldsymbol{T}}\right)-\mathbf{N} \otimes \mathbf{I}_{4}\right) c(\tilde{\mathbf{Z}}) \mathbf{Y} \tag{9}
\end{align*}
$$

where $\mathbf{M}, \mathbf{N} \in \mathbb{R}^{3 \times 3}$ are such that $m_{i j}=\frac{1}{2}\left(\left\langle\mathbf{Y}_{i}, \mathbf{Z}_{j}\right\rangle+\right.$ $\left.\left\langle\mathbf{Y}_{j}, \mathbf{Z}_{i}\right\rangle\right)$ and $n_{i j}=\left\langle\mathbf{e}_{4} \mathbf{e}_{4}^{\top}, \mathbf{Y}_{i}^{\top} \mathbf{Y}_{j}\right\rangle$, and the function $c(\cdot)$ is given by (4). Once we project $2 \mathbf{C Y}$ onto the tangent space, we get the Riemannian gradient. Given the structure of \mathbf{C}, for $\mathbf{Z}=2 \mathbf{C Y}$ we have $c(\tilde{\mathbf{Z}})=0$ due to $\mathbf{Z}_{t}, \tilde{\mathbf{Z}}_{t}$ being equal to zero. Therefore, the projection of the gradient is obtained by the first step of the projection process, yielding

$$
\begin{equation*}
\operatorname{grad} g\left(\mathbf{Y}^{*}\right)=\mathbf{0} \rightarrow\left(\mathbf{C}-\left(\mathbf{M} \otimes \mathbf{I}_{4}\right)\right) \mathbf{Y}^{*}=\mathbf{0} . \tag{10}
\end{equation*}
$$

This gives us $\mathbf{S} \doteq \mathbf{C}-\left(\mathbf{M} \otimes \mathbf{I}_{4}\right)$ satisfying $\mathbf{S Y}^{*}=\mathbf{0}$.

2. Local Solver

2.1. Projection on Tangent Space

Lemma 2. Projection on the tangent space of QO^{2} is given by:

$$
\begin{align*}
\tilde{\mathbf{Z}}_{i} & =\mathbf{Z}_{i}-\mathbf{O}_{i} \operatorname{sym}\left(\mathbf{O}_{i}^{\top} \mathbf{Z}_{i}\right) \\
\operatorname{Proj}_{\mathbf{O}_{i}}\left(\mathbf{Z}_{i}\right) & =\tilde{\mathbf{Z}}_{i}-\frac{\sum\left\langle\mathbf{O}_{i}^{\top} \tilde{\mathbf{Z}}_{j}, \mathbf{F}\right\rangle}{2} \mathbf{O}_{i} \operatorname{skew}\left(\mathbf{O}_{i}^{\top} \mathbf{O}_{j} \mathbf{F}\right) \tag{11}
\end{align*}
$$

Proof. Similar to the proof of Lemma 1, we want to find the matrices $\boldsymbol{\Delta}_{i}$ such that $\operatorname{Proj}_{\mathbf{O}_{i}}\left(\mathbf{Z}_{i}\right)=\mathbf{Z}_{i}+\boldsymbol{\Delta}_{i}$ so that $\left\|\boldsymbol{\Delta}_{1}\right\|_{\mathrm{F}}^{2}+\left\|\boldsymbol{\Delta}_{2}\right\|_{\mathrm{F}}^{2}$ is minimal. Since \mathbf{O}_{i} is a basis, we can write $\boldsymbol{\Delta}_{i}$ as $\boldsymbol{\Delta}_{i}=\mathbf{O}_{i}\left(\mathbf{S}_{i}+\mathbf{K}_{i}\right)$ for some symmetric and skew-symmetric matrices $\mathbf{S}_{i}, \mathbf{K}_{i}$. As $\operatorname{Proj}_{\mathbf{O}_{i}}\left(\mathbf{Z}_{i}\right)^{\top} \mathbf{O}_{i}$ should be skew-symmetric, the symmetric part is given by $\mathbf{S}_{i}=-\operatorname{sym}\left(\mathbf{O}_{i}^{\top} \mathbf{Z}_{i}\right)$. This leaves us $\operatorname{Proj}_{\mathbf{O}_{i}}\left(\mathbf{Z}_{i}\right)=$ $\tilde{\mathbf{Z}}_{i}+\mathbf{O}_{i} \mathbf{K}_{i}$, and we want $\mathbf{K}_{1}, \mathbf{K}_{2}$ to satisfy

$$
\begin{equation*}
\sum_{i \neq j}\left\langle\mathbf{F}, \mathbf{O}_{i}^{\top} \tilde{\mathbf{Z}}_{j}+\mathbf{O}_{i}^{\top} \mathbf{O}_{j} \mathbf{K}_{j}\right\rangle=0 . \tag{12}
\end{equation*}
$$

Since this is the sum of two inner products between the last columns of $\mathbf{O}_{i}, \tilde{\mathbf{Z}}_{j}+\mathbf{O}_{j} \mathbf{K}_{j}$, the matrices $\mathbf{K}_{1}, \mathbf{K}_{2}$ need only have non-zero entries in their fourth rows and columns. Noting that the right bottom entry of $\mathbf{K}_{1}, \mathbf{K}_{2}$ is zero, we denote their fourth column minus the last (zero) entry as $\mathbf{k}_{1}, \mathbf{k}_{2} \in \mathbb{R}^{3}$. If we denote the epipole appearing in the bottom row of $\mathbf{Q}=\mathbf{O}_{1}^{\top} \mathbf{O}_{2}$ by \mathbf{t}_{l} and the other epipole by \mathbf{t}_{r}, we can rewrite (12) as $\mathbf{t}_{l}^{\top} \mathbf{k}_{2}+\mathbf{t}_{r}^{\top} \mathbf{k}_{1}=-\sum_{i \neq j}\left\langle\mathbf{F}, \mathbf{O}_{i}^{\top} \tilde{\mathbf{Z}}_{j}\right\rangle$. Due to $\left\|\mathbf{K}_{i}\right\|_{\mathrm{F}}^{2}=2\left\|\mathbf{k}_{i}\right\|^{2}$, we can use the Lagrangian function $\left\|\mathbf{k}_{1}\right\|^{2}+\left\|\mathbf{k}_{2}\right\|^{2}+\lambda\left(\mathbf{t}_{l}^{\top} \mathbf{k}_{2}+\mathbf{t}_{r}^{\top} \mathbf{k}_{1}+\sum_{i \neq j}\left\langle\mathbf{F}, \mathbf{O}_{i}^{\top} \tilde{\mathbf{Z}}_{j}\right\rangle\right)$ and find the optimal $\mathbf{k}_{1}, \mathbf{k}_{2}$, which concludes the proof.

2.2. Gradient and Hessian

For the algebraic error, we have $f(\mathbf{Q})$ as

$$
\begin{equation*}
f(\mathbf{Q})=\sum_{k=1}^{N}\left\langle\mathbf{Q}, \breve{f}_{i, k} \breve{\mathbf{f}}_{j, k}^{\top}\right\rangle^{\top}, \tag{13}
\end{equation*}
$$

and its gradient and hessian are given as

$$
\begin{align*}
\nabla_{\mathbf{Q}} f(\mathbf{Q}) & =2 \sum_{k=1}^{N}\left\langle\mathbf{Q}, \breve{\mathbf{f}}_{i, k} \breve{\mathbf{f}}_{j, k}^{\top}\right\rangle \breve{\mathbf{f}}_{i, k} \breve{\mathbf{f}}_{j, k}^{\top}, \\
\nabla_{\mathbf{Q}}^{2} f(\mathbf{Q})[\dot{\mathbf{Q}}] & =2 \sum_{k=1}^{N}\left\langle\dot{\mathbf{Q}}, \breve{\mathbf{f}}_{i, k} \breve{\mathbf{f}}_{j, k}^{\top}\right\rangle \breve{\mathbf{f}}_{i, k} \breve{\mathbf{f}}_{j, k}^{\top}, \tag{14}
\end{align*}
$$

where $\breve{\mathbf{f}}_{i, k}=\left[\mathbf{f}_{i, k}^{\top} 0\right]^{\top}$ and $\breve{\mathbf{f}}_{j, k}=\left[\mathbf{f}_{j, k}^{\top} 0\right]^{\top}$.
Taking gradient of $f(\mathbf{Q})=f\left(\mathbf{O}_{1}^{\top} \mathbf{O}_{2}\right)$ with respect to \mathbf{O}_{1} and \mathbf{O}_{2} gives

$$
\begin{align*}
& \nabla_{\mathbf{O}_{1}} f(\mathbf{Q})=2 \mathbf{O}_{2} \nabla_{\mathbf{Q}} f(\mathbf{Q})^{\top}, \\
& \nabla_{\mathbf{O}_{2}} f(\mathbf{Q})=2 \mathbf{O}_{1} \nabla_{\mathbf{Q}} f(\mathbf{Q}), \tag{15}
\end{align*}
$$

and their Hessian is given by

$$
\begin{align*}
\nabla_{\mathbf{O}_{1}}^{2} f(\mathbf{Q})\left[\dot{\mathbf{O}}_{1}\right] & =2 \mathbf{O}_{2} \nabla_{\mathbf{Q}}^{2} f(\mathbf{Q})\left[\dot{\mathbf{O}}_{1}^{\top} \mathbf{O}_{2}\right]^{\top}, \tag{16}\\
\nabla_{\mathbf{O}_{2}}^{2} f(\mathbf{Q})\left[\dot{\mathbf{O}}_{2}\right] & =2 \mathbf{O}_{1} \nabla_{\mathbf{Q}}^{2} f(\mathbf{Q})\left[\mathbf{O}_{1}^{\top} \dot{\mathbf{O}}_{2}\right]
\end{align*}
$$

As before, the Riemannian Hessian is given by projecting the differential of the gradient. The gradient and its differential are given as

$$
\begin{aligned}
\left.\operatorname{grad}_{\mathbf{O}_{i}} f(\mathbf{Q})\right) & =\nabla_{\mathbf{O}_{i}} f(\mathbf{Q})-\mathbf{O}_{i} \operatorname{sym}\left(\mathbf{O}_{i}^{\top} \nabla_{\mathbf{O}_{i}} f(\mathbf{Q})\right) \\
& -c_{i}(\cdot) \mathbf{O}_{i} \operatorname{skew}\left(\mathbf{O}_{i}^{\top} \mathbf{O}_{j} \mathbf{F}\right),
\end{aligned}
$$

$\mathrm{D}\left(\operatorname{grad}_{\mathbf{O}_{i}} f(\mathbf{Q})\right)=\nabla_{\mathbf{O}_{i}}^{2} f(\mathbf{Q})\left[\dot{\mathbf{O}}_{i}\right]$
$-\dot{\mathbf{O}}_{i} \operatorname{sym}\left(\mathbf{O}_{i}^{\top} \nabla_{\mathbf{O}_{i}} f(\mathbf{Q})\right)$
$-\dot{c}_{i}(\cdot) \mathbf{O}_{i} \operatorname{skew}\left(\mathbf{O}_{i}^{\top} \mathbf{O}_{j} \mathbf{F}\right)$
$-c_{i}(\cdot) \dot{\mathbf{O}}_{i} \operatorname{skew}\left(\mathbf{O}_{i}^{\top} \mathbf{O}_{j} \mathbf{F}\right)$
$-c_{i}(\cdot) \mathbf{O}_{i} \operatorname{skew}\left(\dot{\mathbf{O}}_{i}^{\top} \mathbf{O}_{j} \mathbf{F}\right)$,
where the function $c_{i}(\cdot)$ and its differential are given by

$$
\begin{align*}
& c_{i}\left(\mathbf{O}_{1,2}, \nabla_{\mathbf{O}_{1,2}} f(\mathbf{Q})\right)= \\
& \quad \frac{1}{2} \sum_{i \neq j}\left\langle\mathbf{O}_{i}^{\top}\left(\nabla_{\mathbf{O}_{j}} f(\mathbf{Q})-\mathbf{O}_{j} \operatorname{sym}\left(\mathbf{O}_{j}^{\top} \nabla_{\mathbf{O}_{j}} f(\mathbf{Q})\right)\right), \mathbf{F}\right\rangle, \\
& \dot{c}_{i}\left(\mathbf{O}_{1,2}, \nabla_{\mathbf{O}_{1,2}} f(\mathbf{Q})\right)= \\
& \quad \frac{1}{2}\left\langle\dot{\mathbf{O}}_{i}^{\top}\left(\nabla_{\mathbf{O}_{j}} f(\mathbf{Q})-\mathbf{O}_{j} \operatorname{sym}\left(\mathbf{O}_{j}^{\top} \nabla_{\mathbf{O}_{j}} f(\mathbf{Q})\right)\right), \mathbf{F}\right\rangle \\
& +\frac{1}{2}\left\langle\mathbf { O } _ { j } ^ { \top } \left(\nabla_{\mathbf{O}_{i}}^{2} f(\mathbf{Q})\left[\dot{\mathbf{O}}_{i}\right]-\dot{\mathbf{O}}_{i} \operatorname{sym}\left(\mathbf{O}_{i}^{\top} \nabla_{\mathbf{O}_{i}} f(\mathbf{Q})\right)\right.\right. \\
& \left.\left.\quad-\mathbf{O}_{i} \operatorname{sym}\left(\dot{\mathbf{O}}_{i}^{\top} \nabla_{\mathbf{O}_{i}} f(\mathbf{Q})+\mathbf{O}_{i}^{\top} \nabla_{\mathbf{O}_{i}}^{2} f(\mathbf{Q})\left[\dot{\mathbf{O}}_{i}\right]\right)\right), \mathbf{F}\right\rangle . \tag{18}
\end{align*}
$$

