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1. Extended Quintessential Manifold Q(r)

1.1. Projection on Tangent Space

Lemma 1. Projection on the tangent space of the Extended
Quintessential manifold is given by:

Z̃ = Z−Vsym(VTZ)

ProjV(Z) = Z̃− ⟨Vt, Z̃t⟩
1− ∥VT

t Vt∥2F
(I4r −VVT)GV

(1)

where G
.
= Ir ⊗ (e4e

T
4 ).

Proof. Since Q(r) is a Riemannian submanifold, the or-
thogonal projection of the Euclidean gradient gives its Rie-
mannian gradient. Therefore, we want to find the ma-
trix ∆ such that ProjV(Z) = Z + ∆ such that ∥∆∥2F
is minimal. If we denote the orthogonal complement of
V by V⊥ ∈ St(4r − 3, 4r), then the 4r × 4r matrix
[V V⊥] is in O(4r). Using this, we can write ∆ as
∆ = VS + VK + V⊥L for some symmetric and skew-
symmetric matrices S,K and some arbitrary matrix L. One
can show that ∥∆∥2F = ∥S∥2F + ∥K∥2F + ∥L∥2F .
First, we need VT(Z+∆) to be skew-symmetric, leading to
sym(VTZ+S+K) = 0, due to VTV⊥ = 0. Also, we have
sym(S) = S and sym(K) = 0, yielding S = −sym(VTZ).
This gives us Z̃ once we substitute S back in ∆.
For the second constraint, we want ⟨Zt + ∆t,Vt⟩ to be
zero, i.e., ⟨G, Z̃VT +VKVT +V⊥LV

T⟩ = 0. Since G
is symmetric and VKVT is skew-symmetric, their inner
product is zero. After removing VKVT from the constraint,
forming the Lagrangian, and taking derivative with respect
to L, we get 2L + λVT

⊥GV = 0. Placing this expres-
sion for L into the constraint and making use of the identity
V⊥V

T
⊥ = I4r −VVT and G2 = G, we find λ to be

λ =
2⟨G,VZ̃T⟩

⟨G,VVTGV⊥VT
⊥⟩

=
2⟨Vt, Z̃t⟩

1− ∥VT
t Vt∥2F

Substituting L = −λ
2V

T
⊥GV back in ∆, proof becomes

complete.

1.2. Random Sampling on Q(r)

Here, we present the derivations of the formula for finding
V•

E , given by the last two terms of the following equations

V•
t = Ṽt∥Ṽt∥−1

F ,

K = (I3 −V•T
t V•

t )
1
2 ,

V•
E = ṼEK(KṼT

EṼEK)
†
2K.

(2)

Since a matrix V• ∈ Q(r) ⊂ St(3, 4r), it must satisfy
V•TV• = V•

t
TV•

t +V•
E
TV•

E = I3. Using the definition
of K, we need to find V•

E that satisfies V•
E
TV•

E = K2. We
intend to find a matrix X closest to ṼE that satisfies this
condition, which leads to the following Lagrangian function

L(X,Λ) = ∥X− ṼE∥2F + ⟨Λ,XTX−K2⟩.

Taking the derivative with respect to X, we get X− ṼE +
XΛ = 0 or ṼE = X(I3 +Λ). Multiplying both sides with
their transpose and denoting the symmetric I3 +Λ by M,
we get ṼT

EṼE = MK2M. If we multiply both sides of this
equality by K, we get KṼT

EṼEK = (KMK)2. Solving
for M and using X = ṼEM

†, we get the expression for
V•

E as given in (2).

1.3. Gradient and Hessian

We can find the Riemannian gradient of h(V) by simply
projecting the Euclidean gradient on the tangent space of
Q(r)

gradh(V) = ∇h(V)−Vsym(VT∇h(V))

− c(V,∇h(V))(I4r −VVT)GV
(3)

where

c(V,F)
.
=

⟨GV,F−Vsym(VTF)⟩
1− ∥VT

t Vt∥2F
. (4)



The projection of the derivative of the gradient vector field
gives the Riemannian Hessian. This derivative is given by

D
(
gradh(V)

)
(V)[V̇] = ∇2h(V)[V̇]

− V̇sym(VT∇h(V))− ċ(·)GV

− c(·)
(
GV̇ − V̇VTGV

)
.

(5)

In the derivations above, we omitted the terms of the form
VS with a symmetric S as these will be removed by the
first step of the projection on the tangent space. Now as
for the derivative of c(·), if we denote its nominator and
denominator by nc, dc, we have

ċ(V,∇h(V)) =
ṅc

dc
− ncḋc

d2c
(6)

and the derivatives of the nominator and denominator are
given by

ṅc =
(
⟨GV̇,∇h(V)−Vsym(VT∇h(V))⟩

+ ⟨GV,∇2h(V)[V̇]− V̇sym(VT∇h(V))

−Vsym(V̇T∇h(V) +VT∇2h(V)[V̇])⟩
)

ḋc = −2⟨V̇T
t Vt +VT

t V̇t,V
T
t Vt⟩

= −4⟨V̇T
t Vt,V

T
t Vt⟩

(7)

Given these, one can find the Hessian using the projection
of D

(
gradh(V)

)
on the tangent space at V.

1.4. Certificate Matrix

Given a first-order optimal point V∗ = ℓ(Y∗) of the
rank-restricted problem, it satisfies gradh(V∗) = 0 or
grad g(Y∗) = 0. Using the mapping between the two
variable arrangements, we can find grad g(Y) using the
projection given in (1) and the expression given in (3)

grad g(Y) = ℓ−1
(
Projℓ(Y)(ℓ(2CY))

)
= ProjY(2CY).

(8)
The projection for the Y arrangement is thus given by

Z̃ = Z− (M⊗ I4)Y

ProjY(Z) = Z̃− (I3 ⊗ (e4e
T
4 )−N⊗ I4)c(Z̃)Y

(9)

where M,N ∈ R3×3 are such that mij = 1
2 (⟨Yi,Zj⟩ +

⟨Yj ,Zi⟩) and nij = ⟨e4eT4 ,YT
i Yj⟩, and the function c(·)

is given by (4). Once we project 2CY onto the tangent
space, we get the Riemannian gradient. Given the structure
of C, for Z = 2CY we have c(Z̃) = 0 due to Zt, Z̃t being
equal to zero. Therefore, the projection of the gradient is
obtained by the first step of the projection process, yielding

grad g(Y∗) = 0 →
(
C− (M⊗ I4)

)
Y∗ = 0. (10)

This gives us S .
= C− (M⊗ I4) satisfying SY∗ = 0.

2. Local Solver
2.1. Projection on Tangent Space

Lemma 2. Projection on the tangent space of QO2 is given
by:

Z̃i = Zi −Oisym(OT
i Zi)

ProjOi
(Zi) = Z̃i −

∑
⟨OT

i Z̃j ,F⟩
2

Oi skew(O
T
i OjF)

(11)

Proof. Similar to the proof of Lemma 1, we want to find
the matrices ∆i such that ProjOi

(Zi) = Zi + ∆i so that
∥∆1∥2F + ∥∆2∥2F is minimal. Since Oi is a basis, we
can write ∆i as ∆i = Oi(Si + Ki) for some symmetric
and skew-symmetric matrices Si,Ki. As ProjOi

(Zi)
TOi

should be skew-symmetric, the symmetric part is given
by Si = −sym(OT

i Zi). This leaves us ProjOi
(Zi) =

Z̃i +OiKi, and we want K1,K2 to satisfy∑
i ̸=j

⟨F,OT
i Z̃j +OT

i OjKj⟩ = 0. (12)

Since this is the sum of two inner products between the
last columns of Oi, Z̃j +OjKj , the matrices K1,K2 need
only have non-zero entries in their fourth rows and columns.
Noting that the right bottom entry of K1,K2 is zero, we
denote their fourth column minus the last (zero) entry as
k1,k2 ∈ R3. If we denote the epipole appearing in the bot-
tom row of Q = OT

1O2 by tl and the other epipole by tr,
we can rewrite (12) as tTl k2 + tTr k1 = −

∑
i ̸=j⟨F,OT

i Z̃j⟩.
Due to ∥Ki∥2F = 2∥ki∥2, we can use the Lagrangian func-
tion ∥k1∥2 + ∥k2∥2 + λ(tTl k2 + tTr k1 +

∑
i ̸=j⟨F,OT

i Z̃j⟩)
and find the optimal k1,k2, which concludes the proof.

2.2. Gradient and Hessian

For the algebraic error, we have f(Q) as

f(Q) =

N∑
k=1

⟨Q, f̆i,k f̆
T
j,k⟩2, (13)

and its gradient and hessian are given as

∇Qf(Q) = 2

N∑
k=1

⟨Q, f̆i,k f̆
T
j,k⟩ f̆i,k f̆Tj,k,

∇2
Qf(Q)[Q̇] = 2

N∑
k=1

⟨Q̇, f̆i,k f̆
T
j,k⟩ f̆i,k f̆Tj,k,

(14)

where f̆i,k = [fTi,k0]
T and f̆j,k = [fTj,k0]

T.
Taking gradient of f(Q) = f(OT

1O2) with respect to O1

and O2 gives

∇O1f(Q) = 2O2∇Qf(Q)T,

∇O2f(Q) = 2O1∇Qf(Q),
(15)



and their Hessian is given by

∇2
O1

f(Q)[Ȯ1] = 2O2∇2
Qf(Q)[ȮT

1O2]
T,

∇2
O2

f(Q)[Ȯ2] = 2O1∇2
Qf(Q)[OT

1 Ȯ2].
(16)

As before, the Riemannian Hessian is given by projecting the
differential of the gradient. The gradient and its differential
are given as

gradOi
f(Q)) = ∇Oi

f(Q)−Oisym(OT
i ∇Oi

f(Q))

− ci(·)Oiskew(O
T
i OjF),

D(gradOi
f(Q)) = ∇2

Oi
f(Q)[Ȯi]

− Ȯisym(OT
i ∇Oi

f(Q))

− ċi(·)Oiskew(O
T
i OjF)

− ci(·)Ȯiskew(O
T
i OjF)

− ci(·)Oiskew(Ȯ
T
i OjF),

(17)
where the function ci(·) and its differential are given by

ci(O1,2,∇O1,2f(Q)) =

1

2

∑
i ̸=j

⟨OT
i

(
∇Oj

f(Q)−Ojsym(OT
j ∇Oj

f(Q))
)
,F⟩,

ċi(O1,2,∇O1,2
f(Q)) =

1

2
⟨ȮT

i

(
∇Oj

f(Q)−Ojsym(OT
j ∇Oj

f(Q))
)
,F⟩

+
1

2
⟨OT

j

(
∇2

Oi
f(Q)[Ȯi]− Ȯisym(OT

i ∇Oi
f(Q))

−Oisym(ȮT
i ∇Oi

f(Q) +OT
i ∇2

Oi
f(Q)[Ȯi])

)
,F⟩.

(18)


