Essential Matrix Estimation using Convex Relaxations in Orthogonal Space Supplementary Material

Arman Karimian Boston University armandok@bu.edu

1. Extended Quintessential Manifold $\mathfrak{Q}(r)$

1.1. Projection on Tangent Space

Lemma 1. Projection on the tangent space of the Extended Quintessential manifold is given by:

$$\tilde{\mathbf{Z}} = \mathbf{Z} - \mathbf{V} \operatorname{sym}(\mathbf{V}^{\mathsf{T}} \mathbf{Z})$$

$$\operatorname{Proj}_{\mathbf{V}}(\mathbf{Z}) = \tilde{\mathbf{Z}} - \frac{\langle \mathbf{V}_t, \tilde{\mathbf{Z}}_t \rangle}{1 - \|\mathbf{V}_t^{\mathsf{T}} \mathbf{V}_t\|_{\mathbf{F}}^2} (\mathbf{I}_{4r} - \mathbf{V} \mathbf{V}^{\mathsf{T}}) \mathbf{G} \mathbf{V}$$
⁽¹⁾

where $\mathbf{G} \doteq \mathbf{I}_r \otimes (\mathbf{e}_4 \mathbf{e}_4^{\mathsf{T}})$.

Proof. Since $\mathfrak{Q}(r)$ is a Riemannian submanifold, the orthogonal projection of the Euclidean gradient gives its Riemannian gradient. Therefore, we want to find the matrix Δ such that $\operatorname{Proj}_{\mathbf{V}}(\mathbf{Z}) = \mathbf{Z} + \Delta$ such that $\|\Delta\|_{F}^{2}$ is minimal. If we denote the orthogonal complement of \mathbf{V} by $\mathbf{V}_{\perp} \in \operatorname{St}(4r - 3, 4r)$, then the $4r \times 4r$ matrix $[\mathbf{V} \ \mathbf{V}_{\perp}]$ is in O(4r). Using this, we can write Δ as $\Delta = \mathbf{VS} + \mathbf{VK} + \mathbf{V}_{\perp}\mathbf{L}$ for some symmetric and skew-symmetric matrices \mathbf{S}, \mathbf{K} and some arbitrary matrix \mathbf{L} . One can show that $\|\Delta\|_{F}^{2} = \|\mathbf{S}\|_{F}^{2} + \|\mathbf{K}\|_{F}^{2} + \|\mathbf{L}\|_{F}^{2}$.

First, we need $\mathbf{V}^{\mathsf{T}}(\mathbf{Z} + \boldsymbol{\Delta})$ to be skew-symmetric, leading to $\operatorname{sym}(\mathbf{V}^{\mathsf{T}}\mathbf{Z} + \mathbf{S} + \mathbf{K}) = \mathbf{0}$, due to $\mathbf{V}^{\mathsf{T}}\mathbf{V}_{\perp} = \mathbf{0}$. Also, we have $\operatorname{sym}(\mathbf{S}) = \mathbf{S}$ and $\operatorname{sym}(\mathbf{K}) = \mathbf{0}$, yielding $\mathbf{S} = -\operatorname{sym}(\mathbf{V}^{\mathsf{T}}\mathbf{Z})$. This gives us $\tilde{\mathbf{Z}}$ once we substitute \mathbf{S} back in $\boldsymbol{\Delta}$.

For the second constraint, we want $\langle \mathbf{Z}_t + \boldsymbol{\Delta}_t, \mathbf{V}_t \rangle$ to be zero, i.e., $\langle \mathbf{G}, \tilde{\mathbf{Z}}\mathbf{V}^{\mathsf{T}} + \mathbf{V}\mathbf{K}\mathbf{V}^{\mathsf{T}} + \mathbf{V}_{\perp}\mathbf{L}\mathbf{V}^{\mathsf{T}} \rangle = 0$. Since **G** is symmetric and $\mathbf{V}\mathbf{K}\mathbf{V}^{\mathsf{T}}$ is skew-symmetric, their inner product is zero. After removing $\mathbf{V}\mathbf{K}\mathbf{V}^{\mathsf{T}}$ from the constraint, forming the Lagrangian, and taking derivative with respect to **L**, we get $2\mathbf{L} + \lambda \mathbf{V}_{\perp}^{\mathsf{T}}\mathbf{G}\mathbf{V} = \mathbf{0}$. Placing this expression for **L** into the constraint and making use of the identity $\mathbf{V}_{\perp}\mathbf{V}_{\perp}^{\mathsf{T}} = \mathbf{I}_{4r} - \mathbf{V}\mathbf{V}^{\mathsf{T}}$ and $\mathbf{G}^2 = \mathbf{G}$, we find λ to be

$$\lambda = \frac{2 \langle \mathbf{G}, \mathbf{V} \tilde{\mathbf{Z}}^{\mathsf{T}} \rangle}{\langle \mathbf{G}, \mathbf{V} \mathbf{V}^{\mathsf{T}} \mathbf{G} \mathbf{V}_{\perp} \mathbf{V}_{\perp}^{\mathsf{T}} \rangle} = \frac{2 \langle \mathbf{V}_{t}, \tilde{\mathbf{Z}}_{t} \rangle}{1 - \| \mathbf{V}_{t}^{\mathsf{T}} \mathbf{V}_{t} \|_{\mathsf{F}}^{2}}$$

Substituting $\mathbf{L} = -\frac{\lambda}{2} \mathbf{V}_{\perp}^{\mathsf{T}} \mathbf{G} \mathbf{V}$ back in $\boldsymbol{\Delta}$, proof becomes complete.

Roberto Tron Boston University tron@bu.edu

1.2. Random Sampling on $\mathfrak{Q}(r)$

Here, we present the derivations of the formula for finding \mathbf{V}_{E}^{\bullet} , given by the last two terms of the following equations

$$\begin{aligned}
\mathbf{V}_{t}^{\bullet} &= \tilde{\mathbf{V}}_{t} \| \tilde{\mathbf{V}}_{t} \|_{\mathbf{F}}^{-1}, \\
\mathbf{K} &= (\mathbf{I}_{3} - \mathbf{V}_{t}^{\bullet \mathsf{T}} \mathbf{V}_{t}^{\bullet})^{\frac{1}{2}}, \\
\mathbf{V}_{E}^{\bullet} &= \tilde{\mathbf{V}}_{E} \mathbf{K} (\mathbf{K} \tilde{\mathbf{V}}_{E}^{\mathsf{T}} \tilde{\mathbf{V}}_{E} \mathbf{K})^{\frac{1}{2}} \mathbf{K}.
\end{aligned}$$
(2)

Since a matrix $\mathbf{V}^{\bullet} \in \mathfrak{Q}(r) \subset \operatorname{St}(3, 4r)$, it must satisfy $\mathbf{V}^{\bullet \mathsf{T}} \mathbf{V}^{\bullet} = \mathbf{V}_t^{\bullet \mathsf{T}} \mathbf{V}_t^{\bullet} + \mathbf{V}_E^{\bullet \mathsf{T}} \mathbf{V}_E^{\bullet} = \mathbf{I}_3$. Using the definition of \mathbf{K} , we need to find \mathbf{V}_E^{\bullet} that satisfies $\mathbf{V}_E^{\bullet \mathsf{T}} \mathbf{V}_E^{\bullet} = \mathbf{K}^2$. We intend to find a matrix \mathbf{X} closest to $\tilde{\mathbf{V}}_E$ that satisfies this condition, which leads to the following Lagrangian function

$$\mathcal{L}(\mathbf{X}, \mathbf{\Lambda}) = \|\mathbf{X} - \tilde{\mathbf{V}}_E\|_{\mathbf{F}}^2 + \langle \mathbf{\Lambda}, \mathbf{X}^{\mathsf{T}}\mathbf{X} - \mathbf{K}^2 \rangle.$$

Taking the derivative with respect to X, we get $\mathbf{X} - \tilde{\mathbf{V}}_E + \mathbf{X}\mathbf{\Lambda} = \mathbf{0}$ or $\tilde{\mathbf{V}}_E = \mathbf{X}(\mathbf{I}_3 + \mathbf{\Lambda})$. Multiplying both sides with their transpose and denoting the symmetric $\mathbf{I}_3 + \mathbf{\Lambda}$ by M, we get $\tilde{\mathbf{V}}_E^{\mathsf{T}}\tilde{\mathbf{V}}_E = \mathbf{M}\mathbf{K}^2\mathbf{M}$. If we multiply both sides of this equality by K, we get $\mathbf{K}\tilde{\mathbf{V}}_E^{\mathsf{T}}\tilde{\mathbf{V}}_E\mathbf{K} = (\mathbf{K}\mathbf{M}\mathbf{K})^2$. Solving for M and using $\mathbf{X} = \tilde{\mathbf{V}}_E\mathbf{M}^{\dagger}$, we get the expression for \mathbf{V}_E^{\bullet} as given in (2).

1.3. Gradient and Hessian

We can find the Riemannian gradient of $h(\mathbf{V})$ by simply projecting the Euclidean gradient on the tangent space of $\mathfrak{Q}(r)$

grad
$$h(\mathbf{V}) = \nabla h(\mathbf{V}) - \mathbf{V} \operatorname{sym}(\mathbf{V}^{\mathsf{T}} \nabla h(\mathbf{V}))$$

- $c(\mathbf{V}, \nabla h(\mathbf{V}))(\mathbf{I}_{4r} - \mathbf{V} \mathbf{V}^{\mathsf{T}}) \mathbf{G} \mathbf{V}$ (3)

where

$$c(\mathbf{V}, \mathbf{F}) \doteq \frac{\langle \mathbf{G} \mathbf{V}, \mathbf{F} - \mathbf{V} \operatorname{sym}(\mathbf{V}^{\mathsf{T}} \mathbf{F}) \rangle}{1 - \| \mathbf{V}_t^{\mathsf{T}} \mathbf{V}_t \|_{\mathbf{F}}^2}.$$
 (4)

The projection of the derivative of the gradient vector field gives the Riemannian Hessian. This derivative is given by

$$D(\operatorname{grad} h(\mathbf{V}))(\mathbf{V})[\dot{\mathbf{V}}] = \nabla^2 h(\mathbf{V})[\dot{\mathbf{V}}] - \dot{\mathbf{V}}\operatorname{sym}(\mathbf{V}^{\mathsf{T}}\nabla h(\mathbf{V})) - \dot{c}(\cdot)\mathbf{G}\mathbf{V}$$
(5)
$$- c(\cdot)(\mathbf{G}\dot{\mathbf{V}} - \dot{\mathbf{V}}\mathbf{V}^{\mathsf{T}}\mathbf{G}\mathbf{V}).$$

In the derivations above, we omitted the terms of the form **VS** with a symmetric **S** as these will be removed by the first step of the projection on the tangent space. Now as for the derivative of $c(\cdot)$, if we denote its nominator and denominator by n_c, d_c , we have

$$\dot{c}(\mathbf{V}, \nabla h(\mathbf{V})) = \frac{\dot{n}_c}{d_c} - \frac{n_c \dot{d}_c}{d_c^2} \tag{6}$$

and the derivatives of the nominator and denominator are given by

$$\dot{n}_{c} = \left(\langle \mathbf{G}\dot{\mathbf{V}}, \nabla h(\mathbf{V}) - \mathbf{V}\mathrm{sym}(\mathbf{V}^{\mathsf{T}}\nabla h(\mathbf{V})) \rangle + \langle \mathbf{G}\mathbf{V}, \nabla^{2}h(\mathbf{V})[\dot{\mathbf{V}}] - \dot{\mathbf{V}}\mathrm{sym}(\mathbf{V}^{\mathsf{T}}\nabla h(\mathbf{V})) - \mathbf{V}\mathrm{sym}(\dot{\mathbf{V}}^{\mathsf{T}}\nabla h(\mathbf{V}) + \mathbf{V}^{\mathsf{T}}\nabla^{2}h(\mathbf{V})[\dot{\mathbf{V}}]) \rangle \right)$$
(7)
$$\dot{d}_{c} = -2\langle \dot{\mathbf{V}}_{t}^{\mathsf{T}}\mathbf{V}_{t} + \mathbf{V}_{t}^{\mathsf{T}}\dot{\mathbf{V}}_{t}, \mathbf{V}_{t}^{\mathsf{T}}\mathbf{V}_{t} \rangle = -4\langle \dot{\mathbf{V}}_{t}^{\mathsf{T}}\mathbf{V}_{t}, \mathbf{V}_{t}^{\mathsf{T}}\mathbf{V}_{t} \rangle$$

Given these, one can find the Hessian using the projection of $D(\operatorname{grad} h(\mathbf{V}))$ on the tangent space at \mathbf{V} .

1.4. Certificate Matrix

Given a first-order optimal point $\mathbf{V}^* = \ell(\mathbf{Y}^*)$ of the rank-restricted problem, it satisfies $\operatorname{grad} h(\mathbf{V}^*) = \mathbf{0}$ or $\operatorname{grad} g(\mathbf{Y}^*) = \mathbf{0}$. Using the mapping between the two variable arrangements, we can find $\operatorname{grad} g(\mathbf{Y})$ using the projection given in (1) and the expression given in (3)

grad
$$g(\mathbf{Y}) = \ell^{-1} \left(\operatorname{Proj}_{\ell(\mathbf{Y})}(\ell(2\mathbf{CY})) \right) = \operatorname{Proj}_{\mathbf{Y}}(2\mathbf{CY}).$$
(8)

The projection for the **Y** arrangement is thus given by

$$\mathbf{Z} = \mathbf{Z} - (\mathbf{M} \otimes \mathbf{I}_4)\mathbf{Y}$$

$$\operatorname{Proj}_{\mathbf{Y}}(\mathbf{Z}) = \tilde{\mathbf{Z}} - (\mathbf{I}_3 \otimes (\mathbf{e}_4\mathbf{e}_4^{\mathsf{T}}) - \mathbf{N} \otimes \mathbf{I}_4)c(\tilde{\mathbf{Z}})\mathbf{Y}$$
(9)

where $\mathbf{M}, \mathbf{N} \in \mathbb{R}^{3\times 3}$ are such that $m_{ij} = \frac{1}{2}(\langle \mathbf{Y}_i, \mathbf{Z}_j \rangle + \langle \mathbf{Y}_j, \mathbf{Z}_i \rangle)$ and $n_{ij} = \langle \mathbf{e}_4 \mathbf{e}_4^\mathsf{T}, \mathbf{Y}_i^\mathsf{T} \mathbf{Y}_j \rangle$, and the function $c(\cdot)$ is given by (4). Once we project 2**CY** onto the tangent space, we get the Riemannian gradient. Given the structure of **C**, for $\mathbf{Z} = 2\mathbf{C}\mathbf{Y}$ we have $c(\tilde{\mathbf{Z}}) = 0$ due to $\mathbf{Z}_t, \tilde{\mathbf{Z}}_t$ being equal to zero. Therefore, the projection of the gradient is obtained by the first step of the projection process, yielding

grad
$$g(\mathbf{Y}^*) = \mathbf{0} \rightarrow (\mathbf{C} - (\mathbf{M} \otimes \mathbf{I}_4))\mathbf{Y}^* = \mathbf{0}.$$
 (10)

This gives us $\mathbf{S} \doteq \mathbf{C} - (\mathbf{M} \otimes \mathbf{I}_4)$ satisfying $\mathbf{S}\mathbf{Y}^* = \mathbf{0}$.

2. Local Solver

2.1. Projection on Tangent Space

Lemma 2. Projection on the tangent space of QO^2 is given by:

$$\tilde{\mathbf{Z}}_{i} = \mathbf{Z}_{i} - \mathbf{O}_{i} \operatorname{sym}(\mathbf{O}_{i}^{\mathsf{T}} \mathbf{Z}_{i})$$

$$\operatorname{Proj}_{\mathbf{O}_{i}}(\mathbf{Z}_{i}) = \tilde{\mathbf{Z}}_{i} - \frac{\sum \langle \mathbf{O}_{i}^{\mathsf{T}} \tilde{\mathbf{Z}}_{j}, \mathbf{F} \rangle}{2} \mathbf{O}_{i} \operatorname{skew}(\mathbf{O}_{i}^{\mathsf{T}} \mathbf{O}_{j} \mathbf{F})$$
(11)

Proof. Similar to the proof of Lemma 1, we want to find the matrices Δ_i such that $\operatorname{Proj}_{\mathbf{O}_i}(\mathbf{Z}_i) = \mathbf{Z}_i + \Delta_i$ so that $\|\Delta_1\|_F^2 + \|\Delta_2\|_F^2$ is minimal. Since \mathbf{O}_i is a basis, we can write Δ_i as $\Delta_i = \mathbf{O}_i(\mathbf{S}_i + \mathbf{K}_i)$ for some symmetric and skew-symmetric matrices $\mathbf{S}_i, \mathbf{K}_i$. As $\operatorname{Proj}_{\mathbf{O}_i}(\mathbf{Z}_i)^{\mathsf{T}}\mathbf{O}_i$ should be skew-symmetric, the symmetric part is given by $\mathbf{S}_i = -\operatorname{sym}(\mathbf{O}_i^{\mathsf{T}}\mathbf{Z}_i)$. This leaves us $\operatorname{Proj}_{\mathbf{O}_i}(\mathbf{Z}_i) = \tilde{\mathbf{Z}}_i + \mathbf{O}_i \mathbf{K}_i$, and we want $\mathbf{K}_1, \mathbf{K}_2$ to satisfy

$$\sum_{i \neq j} \langle \mathbf{F}, \mathbf{O}_i^{\mathsf{T}} \tilde{\mathbf{Z}}_j + \mathbf{O}_i^{\mathsf{T}} \mathbf{O}_j \mathbf{K}_j \rangle = 0.$$
(12)

Since this is the sum of two inner products between the last columns of \mathbf{O}_i , $\tilde{\mathbf{Z}}_j + \mathbf{O}_j \mathbf{K}_j$, the matrices \mathbf{K}_1 , \mathbf{K}_2 need only have non-zero entries in their fourth rows and columns. Noting that the right bottom entry of \mathbf{K}_1 , \mathbf{K}_2 is zero, we denote their fourth column minus the last (zero) entry as $\mathbf{k}_1, \mathbf{k}_2 \in \mathbb{R}^3$. If we denote the epipole appearing in the bottom row of $\mathbf{Q} = \mathbf{O}_1^T \mathbf{O}_2$ by \mathbf{t}_l and the other epipole by \mathbf{t}_r , we can rewrite (12) as $\mathbf{t}_l^T \mathbf{k}_2 + \mathbf{t}_r^T \mathbf{k}_1 = -\sum_{i \neq j} \langle \mathbf{F}, \mathbf{O}_i^T \tilde{\mathbf{Z}}_j \rangle$. Due to $\|\mathbf{K}_i\|_{\mathrm{F}}^2 = 2\|\mathbf{k}_i\|^2$, we can use the Lagrangian function $\|\mathbf{k}_1\|^2 + \|\mathbf{k}_2\|^2 + \lambda(\mathbf{t}_l^T \mathbf{k}_2 + \mathbf{t}_r^T \mathbf{k}_1 + \sum_{i \neq j} \langle \mathbf{F}, \mathbf{O}_i^T \tilde{\mathbf{Z}}_j \rangle$) and find the optimal $\mathbf{k}_1, \mathbf{k}_2$, which concludes the proof. \Box

2.2. Gradient and Hessian

For the algebraic error, we have $f(\mathbf{Q})$ as

$$f(\mathbf{Q}) = \sum_{k=1}^{N} \langle \mathbf{Q}, \breve{\mathbf{f}}_{i,k} \breve{\mathbf{f}}_{j,k}^{\mathsf{T}} \rangle^{2}, \qquad (13)$$

and its gradient and hessian are given as

$$\nabla_{\mathbf{Q}} f(\mathbf{Q}) = 2 \sum_{k=1}^{N} \langle \mathbf{Q}, \breve{\mathbf{f}}_{i,k} \breve{\mathbf{f}}_{j,k}^{\mathsf{T}} \rangle \breve{\mathbf{f}}_{i,k} \breve{\mathbf{f}}_{j,k}^{\mathsf{T}},$$

$$\nabla_{\mathbf{Q}}^{2} f(\mathbf{Q}) [\dot{\mathbf{Q}}] = 2 \sum_{k=1}^{N} \langle \dot{\mathbf{Q}}, \breve{\mathbf{f}}_{i,k} \breve{\mathbf{f}}_{j,k}^{\mathsf{T}} \rangle \breve{\mathbf{f}}_{i,k} \breve{\mathbf{f}}_{j,k}^{\mathsf{T}},$$
(14)

where $\breve{\mathbf{f}}_{i,k} = [\mathbf{f}_{i,k}^{\mathsf{T}}0]^{\mathsf{T}}$ and $\breve{\mathbf{f}}_{j,k} = [\mathbf{f}_{j,k}^{\mathsf{T}}0]^{\mathsf{T}}$.

Taking gradient of $f(\mathbf{Q}) = f(\mathbf{O}_1^\mathsf{T}\mathbf{O}_2)$ with respect to \mathbf{O}_1 and \mathbf{O}_2 gives

$$\nabla_{\mathbf{O}_1} f(\mathbf{Q}) = 2\mathbf{O}_2 \nabla_{\mathbf{Q}} f(\mathbf{Q})^{\mathsf{T}},$$

$$\nabla_{\mathbf{O}_2} f(\mathbf{Q}) = 2\mathbf{O}_1 \nabla_{\mathbf{Q}} f(\mathbf{Q}),$$
(15)

and their Hessian is given by

$$\nabla^{2}_{\mathbf{O}_{1}} f(\mathbf{Q})[\dot{\mathbf{O}}_{1}] = 2\mathbf{O}_{2}\nabla^{2}_{\mathbf{Q}} f(\mathbf{Q})[\dot{\mathbf{O}}_{1}^{\mathsf{T}}\mathbf{O}_{2}]^{\mathsf{T}},$$

$$\nabla^{2}_{\mathbf{O}_{2}} f(\mathbf{Q})[\dot{\mathbf{O}}_{2}] = 2\mathbf{O}_{1}\nabla^{2}_{\mathbf{Q}} f(\mathbf{Q})[\mathbf{O}_{1}^{\mathsf{T}}\dot{\mathbf{O}}_{2}].$$
 (16)

As before, the Riemannian Hessian is given by projecting the differential of the gradient. The gradient and its differential are given as

$$grad_{\mathbf{O}_{i}} f(\mathbf{Q})) = \nabla_{\mathbf{O}_{i}} f(\mathbf{Q}) - \mathbf{O}_{i} sym(\mathbf{O}_{i}^{\mathsf{T}} \nabla_{\mathbf{O}_{i}} f(\mathbf{Q})) - c_{i}(\cdot) \mathbf{O}_{i} skew(\mathbf{O}_{i}^{\mathsf{T}} \mathbf{O}_{j} \mathbf{F}),$$

$$D(grad_{\mathbf{O}_{i}} f(\mathbf{Q})) = \nabla_{\mathbf{O}_{i}}^{2} f(\mathbf{Q}) [\dot{\mathbf{O}}_{i}] - \dot{\mathbf{O}}_{i} sym(\mathbf{O}_{i}^{\mathsf{T}} \nabla_{\mathbf{O}_{i}} f(\mathbf{Q})) - \dot{c}_{i}(\cdot) \mathbf{O}_{i} skew(\mathbf{O}_{i}^{\mathsf{T}} \mathbf{O}_{j} \mathbf{F}) - c_{i}(\cdot) \dot{\mathbf{O}}_{i} skew(\mathbf{O}_{i}^{\mathsf{T}} \mathbf{O}_{j} \mathbf{F}) - c_{i}(\cdot) \mathbf{O}_{i} skew(\dot{\mathbf{O}}_{i}^{\mathsf{T}} \mathbf{O}_{j} \mathbf{F}),$$

(17)

where the function $c_i(\cdot)$ and its differential are given by

$$c_{i}(\mathbf{O}_{1,2}, \nabla_{\mathbf{O}_{1,2}} f(\mathbf{Q})) = \frac{1}{2} \sum_{i \neq j} \langle \mathbf{O}_{i}^{\mathsf{T}} (\nabla_{\mathbf{O}_{j}} f(\mathbf{Q}) - \mathbf{O}_{j} \operatorname{sym}(\mathbf{O}_{j}^{\mathsf{T}} \nabla_{\mathbf{O}_{j}} f(\mathbf{Q}))) \rangle, \mathbf{F} \rangle,$$

$$\dot{c}_{i}(\mathbf{O}_{1,2}, \nabla_{\mathbf{O}_{1,2}} f(\mathbf{Q})) = \frac{1}{2} \langle \dot{\mathbf{O}}_{i}^{\mathsf{T}} (\nabla_{\mathbf{O}_{j}} f(\mathbf{Q}) - \mathbf{O}_{j} \operatorname{sym}(\mathbf{O}_{j}^{\mathsf{T}} \nabla_{\mathbf{O}_{j}} f(\mathbf{Q}))) \rangle, \mathbf{F} \rangle$$

$$+ \frac{1}{2} \langle \mathbf{O}_{j}^{\mathsf{T}} \left(\nabla_{\mathbf{O}_{i}}^{\mathsf{T}} f(\mathbf{Q}) [\dot{\mathbf{O}}_{i}] - \dot{\mathbf{O}}_{i} \operatorname{sym}(\mathbf{O}_{i}^{\mathsf{T}} \nabla_{\mathbf{O}_{i}} f(\mathbf{Q})) \right)$$

$$- \mathbf{O}_{i} \operatorname{sym}(\dot{\mathbf{O}}_{i}^{\mathsf{T}} \nabla_{\mathbf{O}_{i}} f(\mathbf{Q}) + \mathbf{O}_{i}^{\mathsf{T}} \nabla_{\mathbf{O}_{i}}^{\mathsf{T}} f(\mathbf{Q}) [\dot{\mathbf{O}}_{i}]) \rangle, \mathbf{F} \rangle.$$
(18)