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Supplementary Material

1. Implementation Details

Our experiments are trained on two NVIDIA A100 GPU’s with resolution 512x512. In our first phase of training, we fine-
tune our base model UNet on the full training dataset for a total of 5 epochs at a learning rate of 5e-6. We use an effective
batch size of 16 (through 4 gradient accumulation steps). We implement a dropout scheme where null values replace the pose
input 5% of the time, the input image 5% of the time, and both input pose and input image 5% of the time during training.
We further fine-tune the UNet on a specific sample frame for another 500 steps with a learning rate of 1e-5 and no dropout.
Lastly, we fine-tune the VAE decoder only for 1500 steps with a learning rate of 5e-5. During inference, we use a PNDM
sampler for 100 denoising steps [24].

2. User Studies

We conducted two user studies involving 50 distinct Amazon Mechanical Turk workers to compare our method with state-
of-the art image animation approaches [39] [54] and evaluate the quality of our videos. In both surveys, workers evaluated
results corresponding to 50 unique input images from the test set of the UBC Fashion dataset [50].

In the first user study, workers were asked their pair-wise preferences between our method and one of the other methods.
For each input image, the workers were shown two videos: one containing the input image, our resulting video, and the
MRAA resulting video and the other containing the input image, our resulting video, and the TPSMM resulting video. The
ordering of our video and other video (MRAA or TPSMM) was randomized for each question. For each videos, workers
selected their preference between the videos. The results are shown in Table 3. Overall, the workers had a preference for our
method over MRAA and TPSMM.

In the second user study, workers were asked to rate our videos and TPSMM videos on a scale of 0 to 5, where 0
corresponds a video that does not match the input image at all and 5 corresponds to a realistic animation of the input image.
During training, workers were shown a video of a different dress for as an example of a ”0” rating and a ground-truth video
of the input image as an example of the ”5” rating. The results are shown in Figure 10. Our videos achieved higher scores
for image similarity and quality than TPSMM and 85% of users rated the results of our method a 3 or higher.

# Responses Total Responses (%)
Ours > MRAA [39] 1637 2500 (65%)

Ours > TPSMM [54] 1417 2500 (57%)

Table 3: Results of User Study #1: Workers choose between pairs of videos corresponding to input images, either our result
vs. MRAA result or our result vs. TPSMM result. Overall, participants preferred our method over both MRAA and TPSMM
in terms of quality and similarity to the input image.

Figure 10: Results of User Study #2: Amazon Mechanical Turk worker ratings of our videos from 0 (video does not match
input image) to 5 (video is a realistic animation of the input image). Overall, 85% of workers rated our method a 3 or higher.



3. Different Videos for Source Person and Driving Pose Sequence

We show in Figure 11 that DreamPose can animate an input image using motion from a video containing a different person
and garment identity. As such, our method is applicable in practice when ground-truth motion is unavailable.

Video for Image and Pose.png

Figure 11: Qualitative results for conditioning on subject and pose from different videos.

4. Multiple Input Frames

While DreamPose demonstrates high-quality results with only a single input image, DreamPose can also be fine-tuned
with an arbitrary number of input images of a subject. We showcase the results of training with multiple input images in
Figure 12. We find that additional input images of a subject increase the quality and viewpoint consistency.

5. Deep Fashion Results

We demonstrate the effectiveness of our method on a popular dataset, DeepFashion, in Figure 13 [4, 11]. Although trained
exclusively on the UBC Fashion video dataset, DreamPose performs well on unseen retail images, even to new backgrounds,
model identities, accessories, and patterns.

6. Application to Pose Transfer

While adapted for image-to-video synthesis, DreamPose is also an effective pose transfer tool. In Figure 14, we compare
DreamPose to two state-of-the-art pose transfer models: DynaST [25] and PIDM [4]. Our method is better able to preserve
fine-details, such as shoe appearance, hemline, and face identity, than DynaST or PIDM.



Figure 12: Results after training with 1, 3, 5, and 7 input images. Increasing the number of input frames improves fidelity of
pose, facial identity, and color.



Figure 13: DreamPose results on unseen samples from the DeepFashion dataset [11]. Despite being trained exclusively on
the UBC Fashion Dataset, our method generalizes to new garments and model identities after subject-specific finetuning of
the base model.



Figure 14: Comparison of Pose Transfer Results. We compare our method to two state-of-the-art pose transfer methods,
DynaST [25] and PIDM [4].


