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Appendix A. Model Architectures
We provide the detailed encoder architectures in Figure

5, and MaLS in Figure 1, respectively. Note that we set
L = 7 for the number of decoder blocks and use 2L = 14
MaLS modules to generate a video of 256×256 resolution.
Encoders. The reference encoder Eref consists of a
stack of ResidualBlocks and a fully connected layer. The
face encoder Eface, on the other hands, consists of non-
residual DownBlocks, which outputs 6 levels of spatial fea-
tures maps, each of which are injected into the decoder G
through the proposed SaMFs. We use the audio encoder
architecture in [8] as our audio encoder Eaud.
Moving-average based Latent Smoothing (MaLS).

We use 14 MaLS, each of which consists of a stack of
the weighted moving-average, and 1D convolutions. We
compute the l-th moving-average wl

t as follows:

wl
t =

t+1∑
τ=t−1

ατ · wl
τ , (1)

where t ∈ [1, 2, · · · , T ], αt−1 = 0.25, αt = 0.5, and
αt+1 = 0.25. Conv1Ds in the main paper is a stack of
1D convolutions of kernel size 3 with the stride of size 1
and reflection padding of size 1 as shown in Figure 1. To
compute wl

1 and wl
T , we assign wl

0 = wl
1 and wl

T+1 = wl
T ,

respectively. Since the weights αt−1:t+1 are shared at every
time step t, averaged style codes wl

1:T are calculated at once
regardless of the frame length T . We use different Conv1Ds
for each l-th MaLS block.

Appendix B. Additional Experiments
Reconstruction Results. We compute the CSIM [3] on
the reconstruction task in Voxceleb2 test set to support the
results the main paper. In Table 1, we report CSIM with
the lip-sync metrics (LSE-D and LSE-C [5]). CSIM scores
of all models are low compared to the results of the cross-
id experiment, as Voxceleb2 [2] inherits more dynamic head

⋆Equal contribution.
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Figure 1. Detailed architecture of the l-th moving-average based
latent smoothing (MaLS) module. B is a broadcasting operator.

pose than HDTF [7]. StyleLipSync can generate more accu-
rate lip-sync video using the proposed pose-aware masking,
therefore achieving the best CSIM score.

Table 1. Quantitative comparison of reconstruction of Voxceleb2
test data. The best score for each metric is in bold.

Voxceleb2 (Reconstruction)
Method Image Lip-Sync

CSIM ↑ LSE-D ↓ LSE-C ↑
Wav2Lip96×96 [5] 0.533 6.999 8.329
ATVG128×128 [1] 0.241 8.821 5.421
MakeItTalk256×256 [9] 0.634 10.895 3.624
PC-AVS224×224 [8] 0.405 7.278 7.699
Ours256×256 0.789 6.628 8.056

Unseen Face Adaptation. We plot the CSIM [3] scores
in Figure 2 to further support the necessity of the sync reg-
ularizer Rsync. In all cases of generator tuning, CSIM
scores are higher than the zero-shot case and comparable
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with each other since we minimize the perceptual distance
between the reference and generated frame [6]. In addition
to these visual adaptation, the sync regularizer Rsync en-
forces maintaining the lip-sync generality as described in
the main paper. Note that we do not incorporate ID loss [3]
to our training objective. We experimentally found that ID
loss (and ℓ2 loss) is very sensitive in each image instance,
so it leads video-level artifacts such as flicker. Therefore,
we simplify the training objective where the LPIPS [6] is
the only image-level loss.

Our adaptation method requires about 20-25 minutes (3-
4k steps) for fine-tuning a video of 60 seconds.
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Figure 2. Cosine similarity between face embedding (CSIM) [3]
tendency of the adaptation method.

Visualization of SaMFs. In Figure 3, we visualize the
unsupervisedly predicted masks Sl

t and their overlay results.
We resize and overlay the gray scaled inverse masks 1− Sl

t

onto the generated result. The SaMFs learn the attention
masks with low scores (blue) on the mouth region through-
out all resolutions, which helps the model to improve the lip
fidelity as illustrated in the main paper.
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Figure 3. Visualization of SaMFs at each resolution. Please refer
to our project page for visualization of the resolution less than 16×
16.

Details of User Study. We provide an example of user
studies in Figure 11. The studies conducted with Five
videos in total. Five videos generated by each model were
used in random order. Four videos from HDTF [7] are 10
seconds, and the rest from YouTube is 5 seconds.

Figure 4. Example of a questionnaire used in the user study.

Video Results. We additionally provide the video results
of our work and other baselines, which includes the videos
of reconstruction, cross-id, and ablation results. Please refer
to our project page at the front of the paper.
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Figure 5. Detailed encoder architectures. (B,T, h,w,C) is a 5D tensor of the batch size B, the number of frames T, the height h, the width
w, and the number of channels C. Similarly, (B, h,w,C) is a 4D tensor excluding the axis of the number of frames in (B,T, h,w,C).
’Conv2D-s-C′’ means a 2D convolution of 3 × 3 kernel with stride (s, s), padding (s, s), and output channels C′. ’Linear-C’ means a
fully-connected layer of the output with C nodes. ’Avg.Pool2D-s’ is a 2D average pooling of s × s kernel with stride (s, s). We employ
the audio encoder architecture used in [8, 4] as our audio encoder.
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