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1. Architectural Details
In the following, we provide more details of the network

architecture used in Stage-II.

Stage-II Generator’s Architecture Tab. 1 describes the
layers of the generator architecture Gs, which is illustrated
with a default codebook of size K = 128. We borrow
SPADE residual blocks from the original implementation
described in [3]1. First, we upsample the feature map reso-
lution by a factor of two using bilinear interpolation. Then,
we pass the resulting feature maps through two blocks of
[Conv2d, BatchNorm2d, ReLU]. Here, we set the
convolution kernel size and stride to 3 and 1, respectively.

Stage-II Discriminator’s Architecture We employ a
patch discriminator as described in Tab. 2. Specifically,
we utilize a residual Discriminator Block where the input
feature maps are decimated by a factor of 2 at the end of
each block. The last discriminator layer outputs a 16× 16
feature map that we filter with a sigmoid activation function
before computing the Binary Cross Entropy loss.

2. Quantitative Comparisons
In this section, we quantitatively compare the quality

of our synthesized videos with existing baselines, namely
FOMM [5], PTI [4], and DVP [2]. In the following, we
provide details of our baselines, datasets, and evaluation
settings.

Baselines. We compare our method against existing base-
lines regarding reconstruction and self-reenactment quality.

1The original implementation of the SPADE resnet block is avail-
able at the following link: github.com/NVlabs/SPADE/blob/
fecacc920c1367a038995c45a39c15f6521ca64f/models/
networks/architecture.py

Layer Modules Mask Dim. Input Shape
(num cin, H, W)

Output Shape
(num cout, H, W)

1
Constant - - (1024 ,4 ,4)

SPADE
Res. Block 384 (1024, 4, 4) (512, 4, 4)

Upsample - (512, 4, 4) (512, 8, 8)

2
SPADE
Res. Block 384 (512, 8, 8) (256, 8, 8)

Upsample - (256, 8, 8) (256, 16, 16)

3
SPADE
Res. Block 384 (256, 16, 16) (128, 16, 16)

Upsample - (128, 16, 16) (128, 32, 32)

4
SPADE
Res. Block 384 (128, 32, 32) (128, 32, 32)

Upsample - (128, 32, 32) (128, 64, 64)

5
SPADE
Res. Block 384 (128, 64, 64) (128, 64, 64)

Upsample - (128, 64, 64) (128, 128, 128)

6
SPADE
Res. Block 384 (128, 128, 128) (64, 128, 128)

Upsample - (64, 128, 128) (64, 256, 256)

7
SPADE
Res. Block 384 (64, 256, 256) (64, 256, 256)

Upsample - (64, 256, 256) (64, 512, 512)

8
SPADE
Res. Block 384 (64, 512, 512) (32, 512, 512)

Upsample - (32, 512, 512) (32, 1024, 1024)

9 ToRGB - (32, 1024, 1024) (3, 1024, 1024)

Table 1. Stage-II generator (Gs) architecture. Since we give a
temporal window of size 3, input dimensionality of SPADE blocks
is three times the codebook size K.

When comparing PTI and FOMM, we test the ability to
synthesize the input training videos at high fidelity. We deem
such a comparison fair as PTI cannot do inference. To run
PTI, we reconstruct each video sequence separately using
inversion and pivotal tuning. As suggested by the authors,
we run pivotal tuning for 80 epochs to finetune the pretrained
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Layer Modules Input Shape Output Shape

1 Discriminator Block (3, 1024 ,1024) (64, 512, 512)

2 Discriminator Block (64, 512, 512) (128, 256, 256)

3 Discriminator Block (128, 256, 256) (256, 128, 128)

4 Discriminator Block (256, 128, 128) (256, 64, 64)

5 Discriminator Block (256, 64, 64) (256, 32, 32)

6 Discriminator Block (256, 32, 32) (1, 16, 16)

Table 2. Stage-II discriminator (Ds) architecture.

StyleGAN. We do not overfit PTI to the input training video
for a fair comparison. To generate a video with FOMM, we
take the first frame of the video as the source image. We then
animate the source image with the input training video as the
driving sequence. Note that we utilize the latest pretrained
checkpoint provided at the author’s official website2.

To compare our approach with DVP, we drive the learned
model on a held-out video sequence not used for training.
Here, we test the capability of DVP and our method to rean-
imate the driving video faithfully. Following [2], we train
a DVP model from scratch on training videos until conver-
gence. Specifically, we train the DVP model for 26 epochs,
whereas we stick to our standard 6-epoch training. Once the
model is trained, we synthesize the held-out sequence by
running DVP on input conditioning images generated from
the tracked parameters in the driving video.

For a fair comparison with the baselines that synthesize
artifact-prone and noisy backgrounds, such as PTI, we seg-
ment out the background from all the generated results when
computing the metrics. To compare our method with DVP,
we particularly employ their dilated face masks for quantita-
tive comparisons. However, we have found that in running
our method with tighter non-dilated masks we obtain slightly
better image-based metrics.

Datasets. For comparisons with PTI and FOMM, we cu-
rate a subset of video sequences containing three subjects
(M13, M27, and W09) from MEAD dataset [6]. For each
subject, we pick seven sequences, each captured under three
different viewpoints: front, left, and right view. The first
sequence shows the subjects reciting a dialog at neutral pose,
i.e., no emotions. The three subsequent sequences show
the subjects speaking at different anger levels, while the
last three sequences show the subjects speaking at different
happiness levels.

2github.com/AliaksandrSiarohin/
first-order-model

3. Additional Experiments
In this section, we present additional results and a user

study to understand editing capabilities.

3.1. VoxCeleb2HQ

In addition to MEAD and Obama sequences, we test
our method on VoxCeleb2HQ sequences. We particu-
larly downloaded two celebrity videos of Viggo Mortensen
(7xaAmL5lPFs) and Richard E. Grant (nnLOrbt6D74)
from YouTube3. Using the provided meta information, we
partition each video into shots that show the celebrity speak-
ing. After face detection and cropping, we end up with
approximately 4k and 1.5k video frames from each subject,
respectively. These videos exhibit rapid head pose changes,
complex lighting variations, and occlusions. Our method
can still cope with these challenges, as shown in the supple-
mentary video.

We further devise a cross-shot expression transfer ex-
periment as follows: We utilize a non-overlapping shot as
a driver sequence to synthesize novel mouth expressions
for another source shot of the same subject. More specif-
ically, we simply copy the tracked expression parameters
of the driver onto the source, then render novel half-face
input masks, and finally run our approach with the newly
generated masks. Our method successfully handles expres-
sion transfer even when the driver and source videos exhibit
different head poses, which can generally be deemed as a
non-trivial task, thanks to our face-tracking-enabled synthe-
sis approach. We demonstrate expression transfer results in
the supplementary video. In certain sections of generated
videos, we observe some light-flicker-like artifacts. These
artifacts might be ascribed to high-frequency artifacts of the
rendered half-face masks during expression transfer. This is
an interesting research problem that requires further study in
spatio-temporal modeling to improve robustness.

3.2. User Study

We conduct a user study to assess how convincing our
edits are. To this end, we prepared a survey and col-
lected different opinions, mainly from subjects with post-
production/VFX backgrounds. In total, we reached out to
20 subjects. In the survey, we ask subjects to rate edits
between 1 (not convincing) and 5 (convincing) for three dif-
ferent groups: eye and gaze, mouth and mouth interior, and
teeth removal. Since some of the edits can be uncanny, e.g.,
showing very prominent front teeth, we ask users to rate as
if they came across the actors for the first time. The user
preferences are aggregated across different edits under each
group, as shown in Fig. 1.

From the results in Fig. 1, we observe that our edits are
deemed plausible as most users score them as ”convincing”

3www.youtube.com
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Figure 1. User study for semantic edits. We ask users to rate manual semantic edits over three groups: eyes, mouth and teeth. Overall, the
edits are found plausible except when editor mistakes lead to uncanny facial appearances. This is especially a good example of uncanny
valley effect as human perception is very sensitive to facial appearance and geometry.

across all groups. A deeper analysis of our results reveals that
small errors in manual editing leads to lower ratings. One
of such errors is the mismatch in pupil size (after semantic
editing). Users usually detect such abnormal appearance of
facial parts and find it less convincing. Another example
of users giving lower scores is when the quality with which
topological changes, such as eye and mouth opening, are
executed is subpar, i.e., there is human editor error. This
relates to the well-known uncanny valley effect4. Similarly,
when the proportion of edited facial features looks physically
incorrect, users find the edits less plausible. However, this
is mainly as a result of clumsy edits but not of the model’s
editing or reconstruction sensitivity.

3.3. Comparison against MegaPortraits [1]

We run a qualitative comparison against the one-shot
talking-head generation method by Drobyshev et al. [1]. For
this comparison, we use the held-out sequence of Obama
video as in DVP comparisons. We have asked the authors
to run a self-reenactment task over this sequence. Similar
to ours, MegaPortrait can synthesize videos at a resolution
of 1024× 1024. However, their output is sharper compared
to ours. On the other hand, in comparison to ours, we ob-
serve that MegaPortraits struggles with mouth interior in
terms of temporal stability/coherence and fails to maintain
the teeth identity of the original subject, see Fig. 2. Fur-
thermore, it exhibits texture-sticking phenomenon known to
exist with StyleGAN2-like generators. Please refer to the
supplementary video for comparison.
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