
3D-aware Blending with Generative NeRFs

-Supplementary Material-

Hyunsu Kim 1 Gayoung Lee 1 Yunjey Choi 1 Jin-Hwa Kim 1,2 Jun-Yan Zhu3

1NAVER AI Lab 2SNU AIIS 3CMU

Overview of the supplementary material.

• Please refer to the code, data, and results on

our website: https://blandocs.github.io/

blendnerf.

• Experimental details are described in Section A.

• Details of inversion are described in Section B.

• Details of local alignment are described in Section C

with an extra user study.

• Details of 3D-aware blending are described in Sec-

tion D.

• 3D-aware blending in StyleSDF is described in Sec-

tion E. Our method can be applied to Signed Distance

Fields (SDF) beyond NeRFs.

• Details of user studies are described in Section F.

• Failure cases are described in Section G.

• Societal impact is discussed in Section H.

• Additional qualitative results are in Section I.

A. Experimental details

Baselines.

• Poisson Blending [24] is implemented in

OpenCV [4]. We use cv2.seamlessClone

in the cv2.NORMAL_CLONE cloning type.

• StyleGAN3: As there is no official projection code in

StyleGAN3 [16], we use unofficial implementation1.

We follow the hyperparameters of StyleGAN2 [18]

official projection algorithm2 and set the number of

optimization iterations as 1,000.

1https://github.com/PDillis/stylegan3-fun
2https://github.com/NVlabs/stylegan2-ada-pytorch

• StyleMapGAN [19] introduce stylemap, which has spa-

tial dimensions in the latent space. We use the official

pretrained networks with 8× 8 and 16× 16 stylemap

for AFHQ [9] and 32× 32 stylemap for FFHQ [17].

• SDEdit [22] transforms a noise-added image into a

realistic image through iterative denoising. The total de-

noising step is a sensitive hyperparameter that decides

blending quality. If it is too small, blending results are

faithful to the input images but less realistic. If it is

too large, blending results are less faithful to the in-

put images but more realistic. We carefully select the

number of iterations for the best quality; 300 for the

small editing parts (eyes, nose, and lip) and 500 for

the large editing parts (face and hair). To exploit the

FFHQ-pretrained model [2]3, we implement guided-

diffusion [11] version of SDEdit.

• Latent Composition [5] requires a mask to decide

which area preserve. In our blending experiment, we

need to preserve both the original and reference image,

so we use a mask for the entire image.

Datasets. We select FFHQ [17] and AFHQv2-Cat [9] for

our comparison experiments. FFHQ has 1024×1024 images,

and AFHQ has 512×512 images. In SDEdit [22, 2], the pre-

trained model is trained on 256× 256 FFHQ. Our backbone

network EG3D [6] is trained on 512× 512 FFHQ. In Table

1 of the paper, we upsample the blending results of SDEdit

and EG3D using bilinear interpolation for a fair comparison.

Other baselines in FFHQ and all methods in AFHQ have

the same resolution with the corresponding datasets. As the

StyleMapGAN network is trained on AFHQv1, we fine-tune

the networks using AFHQv2-Cat. As EG3D uses a different

crop version of FFHQ compared to the original FFHQ, we

fine-tune the EG3D using the original crop version of FFHQ.

We use ShapeNet-Car [7] (128×128) to further demonstrate

the effectiveness of our method.

3https://github.com/yandex-research/ddpm-segmentation

https://blandocs.github.io/blendnerf
https://blandocs.github.io/blendnerf

Metrics. In Tables 1 and 2 of the main paper, we use

the masked LPIPS (LPIPSm) [30] to evaluate the faithful-

ness to the reference object. It needs a reference image to

compute the score, and we use aligned reference images as

pseudo-ground-truth images in both experiments: without

and with 3D-aware alignment. Additionally, we always ap-

ply the alignment to our method in Tables 1 and 2 of the

main paper.

Hyperparameters. In the 3D-aware blending, we opti-

mize the latent code wedit ∈ R
14×512 of the W+ space [1]

for 200 iterations. The initial value of wedit is the latent code

of the original image wori. Adam [20] optimizer is used with

0.02 learning rate, β1 = 0.9, and β2 = 0.999. We reformulate

Eqn. 4 in the main paper to specify the hyperparameters as

follows:

Limage =∥(1−m) ◦ Iedit − (1−m) ◦ Iori∥1
+ λ1LLPIPS((1−m) ◦ Iedit, (1−m) ◦ Iori)

+ λ2λmLLPIPS(m ◦ Iedit,m ◦ Iref), (1)

where λ1 = 1, λ2 = 0.5 for AFHQ, λ2 = 0.1 for FFHQ ex-

cept hair (λ2 = 0.3). λm = 3·H·W
∥m∥0

is a weighting parameter

to give a high weight for the small target blending region m;

H and W denotes the height and width of the image, m is a

binary mask m ∈ {0, 1}3×H×W , and ||·||0 is the L0 norm

that counts the total number of non-zero elements. Eqn. 5 in

the paper is reformulated as follows:

Ldensity =λm

∑

r∈Rref

∑

x∈r

∥Gσ(wedit;x)−Gσ(wref;x)∥1

+
∑

r∈Rori

∑

x∈r

∥Gσ(wedit;x)−Gσ(wori;x)∥1.

(2)

The results of L1 loss in the image- and density-blending are

normalized by the number of elements. We set λ in Eqn. 6

in the paper to 10.

B. Inversion details

We train our encoder to predict the camera pose of an im-

age. It has a similar structure to the EG3D discriminator [6]

but does not include minibatch discrimination [26] and in-

volves adjustment of the number of input and output chan-

nels. Given that training images for generative NeRFs [6, 23]

are pre-aligned with respect to scale and translation, the cam-

era pose of the input image can be simplified as a rotation

matrix; EG3D also samples camera poses on the surface of a

sphere. As directly predicting the camera extrinsics ∈ R
4×4

is not easy, we convert the extrinsics to Euler angles ∈ R
3.

During inference, we transform it back to the camera extrin-

sics after obtaining the Euler angles from the encoder, which

produces a more accurate pose estimation. Let the camera

pose of the input image be c.

We adopt Pivotal Tuning Inversion (PTI) [25] as our in-

version method. In the first stage, we optimize the latent

code w ∈ W using the reconstruction loss Lrec as follows:

Lrec = ∥I −GRGB(w, c)∥
1
+ LLPIPS(I, GRGB(w, c)), (3)

where I is an input image and GRGB is an image render-

ing function based on the generative NeRF G. ∥·∥
1

is the

L1 distance and LLPIPS is a learned perceptual image patch

similarity (LPIPS) [30] loss. We optimize the latent code

w ∈ R
512 for 300 iterations.

In the second stage, we fine-tune the generative NeRF

G using the same reconstruction loss Lrec and an additional

regularization loss Lreg as follows:

Lreg =∥Gf
RGB(ws, c)−GRGB(ws, c)∥1

+ LLPIPS(G
f
RGB(ws, c), GRGB(ws, c)), (4)

where G
f
RGB represents the frozen version of GRGB, and ws

is a randomly sampled latent code followed by linear interpo-

lation with w. The interpolation parameter is also randomly

sampled in [0, 1]. The final loss function for optimizing G is

as follows:

L = Lrec + λregLreg, (5)

where λreg = 0.1 and we optimize the G for 100 iterations.

Runtime. As described above, our inversion method con-

sists of two-stage optimization. For a single image, the first

stage (latent code) takes 23.6s, and the second stage (gen-

erative NeRF) takes 20.4s. We test the runtime on a single

A100 GPU.

C. Local alignment

Local alignment is a fine-grained alignment between the

target regions of two images. Even though we have matched

two images through pose alignment, the scale and translation

of target regions (e.g., face, eyes, ears, etc.) might need to be

further aligned, as the location and size of each object part

differ across two object instances. Figure 1 illustrates our

local alignment algorithm. In Step 1, we need to obtain 3D

meshes Mori and Mref of input images using the Marching

Cube algorithm [21] and the density fields. In Step 2, we

first cast rays through the interior of the target region m and

determine the intersected 3D points with the mesh Mori. We

define the set of points as a 3D point cloud Pori. Similarly,

we can get the reference’s 3D point cloud Pref.

Given two sets of 3D point clouds Pref and Pori, we use

the Iterative Closest Point (ICP) algorithm [3, 8] to obtain

𝑃!"#

𝑠 0 0 𝑡!

0 𝑠 0 𝑡"

0 0 𝑠 𝑡#

0 0 0 1

𝐰"$%

G
𝝈𝐰!"#

Step 2. Local alignment (Target regions)

NeRF space 𝝈

M
arch

in
g

C
u
b
e

Ray

𝐜!"#

Mask 𝐦
Original 𝐈$%&

Mask 𝐦′Rotated ref 𝐈𝐫𝐞𝐟
𝐑

Iterativ
e C

lo
sest P

o
in

t (IC
P

)

3D transformation	

matrix	𝐖

Ray

𝐜!"#

Step 1. Mesh generation

𝐰"$%
G'()

𝒄!"#

Aligned reference)𝐈"$%

NeRF space 𝝈

Mesh 𝑀%+,

Mesh 𝑀$%&

𝑀!"#

𝑀"$%

𝑃"$%

G
+

M
arch

in
g

C
u
b
e

Figure 1: Local alignment: In Step 1, we first generate 3D meshes

using the density field generator Gσ and the Marching Cube [21]

algorithm. In Step 2, we calculate the intersected 3D points between

the 2D mask m and the corresponding mesh M. Then, we use

Iterative Closest Point (ICP) algorithm [3, 8] to estimate the 3D

transformation matrix W ∈ R
4×4 to align the 3D point clouds

(Pori and Pref) in terms of the scale and the translation. Finally, we

locally align the reference image Ĩref by GRGB(wref, cori;W).

the 3D transformation matrix W ∈ R
4×4. When we sample

the 3D points to align the reference image, we transform

the 3D point coordinates by multiplying the coordinate of

sampled points with W. We only use uniform scaling and

translation in ICP, as we have already matched the rotation

through pose alignment as described earlier in Section 3.1

of the main paper. Finally, we can generate the fully aligned

reference image Ĩref as follows:

Ĩref = GRGB(wref, cori;W). (6)

Iterative Closest Point (ICP) [3, 8] is an algorithm to

minimize the difference between two 3D point clouds. It is an

iterative optimization process until we meet the threshold τ

of difference or the maximum number of iterations K = 20.

Please note that we do not use rotation in ICP as we align

the rotation for entire objects in pose alignment, and refer to

the exact details of ICP in our code.

3D transformation in the NeRF space. W is the 3D

transformation matrix computed by the ICP algorithm. It

transforms the point cloud of the blending region in the ref-

erence, aligning with the point cloud of the blending region

in the original. A Neural Radiance Field learns a mapping

Original ReferenceMesh Mesh

w/o 3D local align w/ 3D local align (Ours)

Figure 2: The effect of local alignment. Generative NeRF can align

global object poses, but cannot handle differences in local parts.

For example, in AFHQ-Cat, the proportions of a cat’s face and ears

vary. (Bottom left) It cannot be handled with pose estimation only,

so local parts can be blended in the wrong places. (Bottom right)

Our 3D local alignment method alleviates this issue and produces

more natural results.

function f that outputs density σ and radiance cRGB for a

given 3D point x ∈ R
3; f(x) = (σ, cRGB). 3D points are

sampled along a ray, which depends on the camera pose. Let

us assume that we define the matrix W as reducing scale. We

cannot directly reduce the object scale in NeRF because the

mapping function f is fixed. Instead, we can sample points

more widely to reduce the object scale relatively. Renewed

density σ′ and radiance c′RGB can be computed using the

inverse matrix of W as follows f(W−1
x) = (σ′, c′RGB).

Ablation study for local alignment. Pose alignment is

a critical part, but it alone might not be enough to handle

loosely aligned images such as AFHQv2-Cat. Figure 2 shows

an ablation study of our 3D local alignment method. The cat

in the original image has a smaller face than the reference

cat. If we just apply pose alignment only, the blending result

(bottom left in Figure 2) will create a much bigger face than

humans normally expect. After locally aligning the face of

the reference, we can obtain a natural-looking result with

proper scale (bottom right in Figure 2). Figure 3 shows addi-

tional ablation results. We further examine local alignment

by conducting a user study. In 60.3% of cases, users prefer

our blending results with local alignment compared to those

without alignment. Please see the details of the user study in

Section F.

Runtime. Pose alignment takes 1.7s, and local alignment

takes 4.2s, 4.6s, 5.9s for ears, eyes, face in AFHQv2-Cat [9].

The larger blending part takes more time to align. Our lo-

cal alignment implementation uses the Trimesh4 library,

which provides pre-defined functions for triangular meshes

4https://trimsh.org/trimesh.html

Original w/ 3D local (Ours)w/o 3D local Reference

E
ar

s
M

es
h

F
ac

e
M

es
h

E
y
es

M
es

h

Figure 3: Ablation study of our 3D local alignment method in Section C. The leftmost and rightmost columns denote the original and

reference images, respectively. Images in even rows are meshes corresponding to odd rows. Red lines denote the target blending mask,

and yellow dotted lines are guidelines to be aware of alignment easily. Our 3D local alignment method (3rd column) shows more realistic

blending results than those without local alignment (2nd column).

Original Reference (Ours)

Figure 4: Blending comparison among the optimization spaces

in Section D. The first and second columns denote original and

reference images, respectively. The blending results of W space

(3rd column) show realistic but less faithful to the reference images;

see the details of eyes. The blending results of G space (rightmost

column) show faithful but less realistic results. W+ space (4th

column) shows favorable results in both realism and faithfulness.

on the CPU. Implementing it with GPU-based libraries can

further reduce alignment runtime.

D. Details of 3D-aware Blending

Choice for the optimization space. In our blending

method, we optimize the latent code w ∈ R14×512 in the

extended latent space W+ [1]. There are other options for

optimization, such as an intermediate latent space W [17]

or generator G. Figure 4 shows the comparison among op-

timization spaces in 3D-aware blending. W space shows

realistic blending results but lacks faithfulness to the refer-

ence object. The blended image can not capture the green

eyes of the reference object, as shown in the first row of

Figure 4. Optimizing G shows faithfulness to the reference

object but lacks realism. The boundaries of results look par-

ticularly odd. W+ space shows great results in both realism

and faithfulness, our method adopts to optimize the W+
latent space.

Masks used in alignment and blending. At first, we apply

pose alignment to rotate the reference to match the pose of

the original. A user selects a mask m for the target blending

region of the original image. The user selects another mask

m
′ for the target blending region of the reference image, or it

can be derived automatically using previous works [31, 13].

We blend images using the union of the masks, m∪m
′, and

we redefine m as this union in Figure 4 in the main paper.

Before blending in AFHQ, m and m
′ are used for local

alignment to align target regions of two images, as shown

in Figure 1. After local alignment, the target reference mask

m
′ is also modified.

Original Reference Blend

Figure 5: Our 3D-aware blending results of StyleSDF [23] in Sec-

tion E. The third column is blending results in 10242 resolution.

Our method can be applied to the SDF-based 3D-aware generator

beyond NeRFs.

Runtime comparison with baselines. Poisson blend-

ing [24], StyleMapGAN [19], Latent Composition [5] take

less than a second to blend images at 1024×1024 resolution,

as they use low-level visual cues [24] or encoders [19, 5].

SDEdit [22] and StyleGAN3 [16] both require an iterative

process. SDEdit takes 29.5s for 500 iterations (face and hair)

and 20.0s for 300 iterations (nose, eyes, lip) at 2562 image

resolution. StyleGAN3 takes 69.8s for 5122 and 106.5s for

10242 resolution. Our method takes 26.9s at 5122 and we

can further reduce the time to 12.1s by combining ours with

Poisson blending (Section 3.3). All runtimes are measured

in the same device with a single A100 GPU. Ours is faster

than other optimization-based baselines but slower than the

encoder-based methods. In the future, we can directly train

an encoder using our image- and density-blending losses to

reduce the runtime.

E. 3D-aware blending in StyleSDF

StyleSDF [23] generates high-fidelity view-consistent im-

ages in 1024×1024 resolution. The main difference between

StyleSDF and EG3D [6] is StyleSDF uses Signed Distance

Fields (SDF) as 3D representation. Besides, StyleSDF does

not require camera pose labels to train the generator, unlike

EG3D. In our 3D-aware blending method, we can use the

SDF value d as a 3D signal, similar to the density σ in EG3D.

If we assume a non-hollow surface, the SDF value can be

w/ ℒ!"#$%&' (Ours)

Original ReferenceMesh Mesh

w/o ℒ!"#$%&'

Figure 6: Ablation study of density-blending loss Ldensity in

StyleSDF (Section E). This experiment uses SDF instead of vol-

ume density σ. Without Ldensity, the blending result shows a blurry

image, and the corresponding mesh can not reflect the geometry

of the hair of the reference image. 3D signals such as density and

SDF are key components in the 3D-aware blending method.

Original Reference w/o ℒ!"#$% w/ ℒ!"#$%

Figure 7: Ablation study of image-blending loss Limage in StyleSDF

(Section E). We can control the degree to which the color of the

reference object is reflected in the blended image, by adjusting the

weight of the image-blending loss with respect to the reference

image.

converted to the density σ as follows:

σ(x) =
1

α
· Sigmoid(

−d(x)

α
), (7)

where x ∈ R
3 is a 3D location and α is a learned parameter

about the tightness of the density around the surface bound-

ary. We use the same blending loss functions used in EG3D,

except we replace the density σ with SDF d.

We demonstrate that our method can be applied to other

3D-aware generative models beyond EG3D. Figure 5 shows

our 3D-aware blending results in StyleSDF using generated

images. Figure 6 and Figure 7 show ablation studies of our

blending loss terms: Ldensity and Limage, respectively. The

ablation studies show a similar tendency with EG3D exper-

iments in the paper. Without the density-blending loss, we

cannot blend highly structured objects like hair. If a user

does not want to reflect the reference color, we remove or

give a low weight to the image-blending loss on reference:

λ2 in Eqn. 4 in the main paper.

Figure 8: An introduction page of user studies in Amazon Mechan-

ical Turk (MTurk).

Figure 9: A comparison page between ours and baselines in MTurk.

Figure 10: A comparison page of ablation study of our local align-

ment in MTurk.

F. User study details

We conduct extensive user studies to show the effective-

ness of our methods in the realism score of human perception

on the Amazon Mechanical Turk (MTurk) platform. We refer

to user study pipelines of SDEdit [22] and modify the tem-

plate5 from the previous work [29]. The instruction page is

shown in Figure 8, and MTurk workers participate in surveys

5https://github.com/phillipi/AMT Real vs Fake

Original Reference OursAligned Ref

Undesired

changes

Figure 11: A failure case of blending from long hair to short hair.

comparing the results of two methods, as shown in Figures

9 and 10.

Each evaluation set consists of 25 pairwise comparison

questions, with an additional five questions used to detect

deceptive workers. We only invite workers with a HIT Ap-

proval Rate greater than 98%. Each set takes approximately

2 to 3 minutes and offers a reward of $0.5.

Comparison with baselines are conducted in Tables 3

and 4 of the main paper. Figure 9 shows the comparison

page. There are two blending results: one for our method

and the other for one of the baselines. The order of images is

randomly shuffled, and a worker is instructed to select a more

realistic image. In CelebA-HQ [15] and AFHQv2-Cat [9],

we use 60 and 40 evaluation sets, respectively; CelebA-HQ

for 1,500 and AFHQ for 1,000 pairwise comparisons. We set

the same number of evaluation sets to report the combination

of our method and Poisson blending.

Ablation study of 3D local alignment is conducted in

Section C. The user study page is shown in Figure 10. Ex-

perimental settings are almost similar to previous studies:

Tables 3 and 4 of the main paper. We show two blending

results of our method with and without local alignment. Note

that pose alignment is used in both of the results. We use 20

evaluation sets in AFHQv2-Cat; 500 pairwise comparisons.

G. Failure cases

Besides inversion as we described in the main paper, we

present other failure cases in our blending method. Fig-

ure 11 shows our image blending result from a large mask

to a small mask. Undesirable effects (yellow box) of the

reference image have been introduced to the final result. One

potential solution for future work is to inpaint the original

image before blending. Figure 12 shows another failure case

of local alignment in the Iterative Closest Point (ICP) algo-

rithm [3, 8]. ICP is an approach to aligning the two point

clouds: Pori and Pref for the original and reference objects,

respectively. It iteratively minimizes the distance between

each 3D point in Pori and its nearest point in Pref, but it may

fall into the local extremum. Pref shrinks to a point P̃ref as

discussed in the previous work [27]. To mitigate this issue,

we restrict the minimum and maximum scaling factor to

[0.75, 1.25]. In the future, we may utilize recent pairwise

registration techniques [10, 27] instead of ICP for better

local alignment.

!𝑃!"#

Left eye of reference

O
ri

g
in

al
R

ef
er

en
ce

A
li

g
n
ed

3D point clouds visualization

ICP

Figure 12: A failure case of the Iterative Closest Point (ICP) algo-

rithm in Section G. If a user gives inappropriate masks or the target

region of the mesh has indistinctive geometry, ICP may fail and

generates a degraded aligned reference image. Masks are given as

both eyes for the original image and the left eye for the reference

image. The right figure shows the point cloud visualization. Red

dots stand for the point cloud Pori of both eyes of the original object.

Light blue dots stand for the point cloud Pref of the left eye of the

reference object. Blue dots denote the transformed point cloud P̃ref

of the reference after applying ICP.

BarbershopStyleFusion OursOriginal Reference LC

Figure 13: Additional hair blending comparison with baselines.

Latent Composition (LC) generates real-looking images but far

from the input images. StyleFusion alters the hair length of the

reference images. In StyleFusion and Barbershop, the hair and face

poses do not match in each blending result. Ours shows the best

results regarding 3D-aware alignment and identity preservation.

H. Societal impact

The societal impact of image blending shares similar is-

sues raised in the other generative models and view synthesis

techniques [12]. For instance, a malicious user may use im-

age blending to manipulate the expression and identity of

a real person or create a scene that does not exist in real

life. Most of the existing watermarking and visual forensics

methods focus on 2D image content [28]. Adopting visual

forensics methods for 3D-aware content seems to be an im-

portant future work.

Original Reference SDEditAligned Ref Ours

Figure 14: Comparison with SDEdit in CelebA-HQ and AFHQv2-

Cat test sets. SDEdit blending results often do not match reference

images well. The identities of faces or ears have been changed in

both CelebA-HQ and AFHQ datasets.

I. Additional results

Comparison with StyleFusion and Barbershop. In order

to show the advantages of our 3D-aware approach, we com-

pare our method with additional baselines: StyleFusion [14]

and Barbershop [32]. Previous methods struggle to blend

fairly misaligned images, and they acknowledged this limi-

tation in their papers. As shown in Figure 13, latent-based

methods often fail to preserve identity, as projecting im-

ages into low-dimensional latent space remains challenging.

For example, Latent Composition [5] and StyleFusion al-

tered identities from the input images. Other works, such

as StyleMapGAN [19] and Barbershop, use the spatial la-

tent space to capture image details, but as a trade-off, they

are worse at blending misaligned images. In contrast, our

method preserves identity while maintaining 3D consistency

between parts. Our method addresses these issues by 1) 3D-

aware alignment and 2) blending with 3D-aware constraints,

including pixel RGBs and volume density from the aligned

reference.

Comparison with SDEdit in AFHQ. In addition to com-

paring CelebA-HQ [15], we also conduct a comparison with

SDEdit using the AFHQv2-Cat dataset [9]. However, since

pretrained diffusion models on AFHQ are not publicly avail-

able, we use the LSUN-Cat model6. Figure 14 shows SDEdit

fails to preserve the reference well in both datasets.

More qualitative results. We show additional qualitative

results of our 3D-aware blending. Figure 15 shows blending

results of highly structured objects such as eyeglasses. Fig-

ures 16 and 17 show blending comparisons with baselines.

Our results show outstanding blending results than other

6https://github.com/openai/guided-diffusion

Multi-view results

Original ReferenceMesh Mesh

MeshBlend

Figure 15: Blending highly structured parts such as eyeglasses. Our

blending method can reflect the high-fidelity 3D shape of eyeglasses

and generate multi-view consistent results.

baselines. By virtue of NeRF, we can synthesize novel-view

images. Figures 18–21 show multi-view consistent blend-

ing results. Please see our project page for the multi-view

consistent blending videos.

References

[1] Rameen Abdal, Yipeng Qin, and Peter Wonka. Im-

age2stylegan: How to embed images into the stylegan latent

space? In ICCV, 2019. 2, 5

[2] Dmitry Baranchuk, Ivan Rubachev, Andrey Voynov, Valentin

Khrulkov, and Artem Babenko. Label-efficient semantic seg-

mentation with diffusion models. In International Conference

on Learning Representations (ICLR), 2022. 1

[3] Paul J Besl and Neil D McKay. Method for registration of

3-d shapes. In Sensor fusion IV: control paradigms and data

structures, 1992. 2, 3, 7

[4] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of

Software Tools, 2000. 1

[5] Lucy Chai, Jonas Wulff, and Phillip Isola. Using latent space

regression to analyze and leverage compositionality in gans.

In International Conference on Learning Representations

(ICLR), 2021. 1, 5, 8, 10

[6] Eric R. Chan, Connor Z. Lin, Matthew A. Chan, Koki Nagano,

Boxiao Pan, Shalini De Mello, Orazio Gallo, Leonidas

Guibas, Jonathan Tremblay, Sameh Khamis, Tero Karras,

and Gordon Wetzstein. Efficient geometry-aware 3D genera-

tive adversarial networks. In IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2022. 1, 2, 5

[7] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat

Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Manolis

Savva, Shuran Song, Hao Su, et al. Shapenet: An information-

rich 3d model repository. arXiv preprint arXiv:1512.03012,

2015. 1, 12

[8] Yang Chen and Gérard Medioni. Object modelling by regis-

tration of multiple range images. Image and vision computing,

1992. 2, 3, 7

[9] Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha.

Stargan v2: Diverse image synthesis for multiple domains. In

https://blandocs.github.io/blendnerf

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), 2020. 1, 3, 7, 8

[10] Christopher Choy, Wei Dong, and Vladlen Koltun. Deep

global registration. In CVPR, 2020. 7

[11] Prafulla Dhariwal and Alexander Nichol. Diffusion mod-

els beat gans on image synthesis. In Conference on Neural

Information Processing Systems (NeurIPS), 2021. 1

[12] Jeffrey T Hancock and Jeremy N Bailenson. The social

impact of deepfakes. Cyberpsychology, behavior, and social

networking, 2021. 7

[13] Berthold K.P. Horn and Brian G. Schunck. Determining

optical flow. Artificial Intelligence, 1981. 5

[14] Omer Kafri, Or Patashnik, Yuval Alaluf, and Daniel Cohen-

Or. Stylefusion: A generative model for disentangling spatial

segments. arXiv preprint arXiv:2107.07437, 2021. 8

[15] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.

Progressive growing of gans for improved quality, stability,

and variation. In International Conference on Learning Rep-

resentations (ICLR), 2018. 7, 8

[16] Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen,

Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Alias-free

generative adversarial networks. In Conference on Neural

Information Processing Systems (NeurIPS), 2021. 1, 5

[17] Tero Karras, Samuli Laine, and Timo Aila. A style-based

generator architecture for generative adversarial networks. In

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), 2019. 1, 5

[18] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,

Jaakko Lehtinen, and Timo Aila. Analyzing and improv-

ing the image quality of stylegan. In IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2020. 1

[19] Hyunsu Kim, Yunjey Choi, Junho Kim, Sungjoo Yoo, and

Youngjung Uh. Exploiting spatial dimensions of latent in gan

for real-time image editing. In IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2021. 1, 5, 8

[20] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. In International Conference on

Learning Representations (ICLR), 2015. 2

[21] William E Lorensen and Harvey E Cline. Marching cubes:

A high resolution 3d surface construction algorithm. ACM

Transactions on graphics (TOG), 1987. 2, 3

[22] Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun

Wu, Jun-Yan Zhu, and Stefano Ermon. Sdedit: Guided image

synthesis and editing with stochastic differential equations.

In International Conference on Learning Representations

(ICLR), 2021. 1, 5, 6

[23] Roy Or-El, Xuan Luo, Mengyi Shan, Eli Shechtman,

Jeong Joon Park, and Ira Kemelmacher-Shlizerman. Stylesdf:

High-resolution 3d-consistent image and geometry genera-

tion. In IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2022. 2, 5, 12

[24] Patrick Pérez, Michel Gangnet, and Andrew Blake. Poisson

image editing. In ACM SIGGRAPH, 2003. 1, 5, 10

[25] Daniel Roich, Ron Mokady, Amit H Bermano, and Daniel

Cohen-Or. Pivotal tuning for latent-based editing of real

images. ACM Transactions on graphics (TOG), 2022. 2

[26] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki

Cheung, Alec Radford, and Xi Chen. Improved techniques

for training gans. In Conference on Neural Information Pro-

cessing Systems (NeurIPS), 2016. 2

[27] Yue Wang and Justin M. Solomon. Deep closest point: Learn-

ing representations for point cloud registration. In IEEE In-

ternational Conference on Computer Vision (ICCV), October

2019. 7

[28] Ning Yu, Larry S Davis, and Mario Fritz. Attributing fake

images to gans: Learning and analyzing gan fingerprints. In

IEEE International Conference on Computer Vision (ICCV),

2019. 7

[29] Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful

image colorization. In European Conference on Computer

Vision (ECCV), 2016. 6

[30] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,

and Oliver Wang. The unreasonable effectiveness of deep

features as a perceptual metric. In IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2018. 2

[31] Jun-Yan Zhu, Philipp Krähenbühl, Eli Shechtman, and

Alexei A. Efros. Generative visual manipulation on the natu-

ral image manifold. In European Conference on Computer

Vision (ECCV), 2016. 5

[32] Peihao Zhu, Rameen Abdal, John Femiani, and Peter Wonka.

Barbershop: Gan-based image compositing using segmenta-

tion masks. In ACM Transactions on graphics (TOG), 2021.

8

Original Reference

w
/o

 a
li
g
n

Poisson LC StyleGAN3 StyleMapGAN SDEdit Ours + PB

w
/
al

ig
n

w
/o

 a
li
g
n

w
/
al

ig
n

w
/o

 a
li
g
n

w
/
al

ig
n

w
/o

 a
li
g
n

w
/
al

ig
n

Figure 16: Blending comparison with baselines in the CelebA-HQ test set. It shows supplementary comparison results of Table 1 in the

paper. LC and PB stand for Latent Composition [5] and Poisson Blending [24], respectively.

Original Reference

w
/o

 a
li
g
n

Poisson StyleGAN3 StyleGAN3 StyleMap!×! StyleMap#$×#$ Ours + PB

w
/
al

ig
n

w
/o

 a
li
g
n

w
/
al

ig
n

w
/o

 a
li
g
n

w
/
al

ig
n

w
/o

 a
li
g
n

w
/
al

ig
n

Figure 17: Blending comparison with baselines in the AFHQv2-Cat test set. It shows supplementary comparison results of Table 2 in the

paper.

Original Reference Multi-view blending results

Figure 18: Multi-view blending results in CelebA-HQ using EG3D.

Original Reference Multi-view blending results

Figure 19: Multi-view blending results in ShapeNet-Car [7] using

EG3D. The last two rows demonstrate that our method can achieve

natural blending even when the sizes of the blending regions differ.

Our 3D local alignment also performs well on the ShapeNet-Car

dataset.

Original Reference Multi-view blending results

Figure 20: Multi-view blending results in AFHQv2-Cat using

EG3D.

Original Reference Multi-view blending results

Figure 21: Multi-view blending results in generated images using

FFHQ-pretrained StyleSDF [23].

	. Experimental details
	. Inversion details
	. Local alignment
	. Details of 3D-aware Blending
	. 3D-aware blending in StyleSDF
	. User study details
	. Failure cases
	. Societal impact
	. Additional results

