
Appendix

A. More gain with other base superpixel sizes
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(a) Base superpixel size of 64
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(b) Base superpixel size of 256

Figure 7: Effect of base superpixel size on Cityscapes. The
performance difference is greater when the superpixel size
is smaller.
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Figure 8: Effect of base superpixel size on PASCAL. Our
method exhibits robustness to large superpixels, while the
baseline is sensitive.

For ease of exposition, Figure 3 presents the gain of our
method (compared to SP [4]) for a limited set of base super-
pixel sizes. In this section, we report an additional investi-
gation suggesting further gain with different base superpix-
els.
Further gain on Cityscapes. In Figure 7a, we addition-
ally provide a comparison between the proposed method
(AMSP+S) and SP [4], where the experiment setup with
Cityscapes is identical to that in Figure 3a except that the
base superpixel size is 64 (Figure 7a) instead of 256 (Fig-
ure 7b). Our adaptive merging method (AMSP+S) is es-
pecially effective when the superpixel size is small in Fig-
ure 7a, thanks to the adaptive merging mechanism. This ob-
servation suggests more significant gain of our method with
other choices of base superpixel size than that in Figure 3.
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Figure 9: Additional rounds experiments on Cityscapes. We
extend the experiments in Figure 3a up to a budget of 400k.
The performance improvement remains consistent across
various additional budgets.

Methods mIoU

SP [4] 63.77

AMSP+S (bottom 10%) 64.33

AMSP+S (top 10%) 65.99

AMSP+S (complete 100%) 66.53

Table 5: Various levels of partial merging. Experiments are
conducted under the same setting of Figure 3a with 100k
clicks (Cityscapes, superpixel size of 256).

Further gain on PASCAL. We also demonstrate a larger
gap between the proposed method and existing one in PAS-
CAL. In Figure 8, our adaptive merging method (AMSP+S)
outperforms the baseline (SP) for various superpixel sizes
as we observed in Figure 3. We stress that the gain of the
proposed method is particularly larger than the one reported
in Figure 3 when the base superpixel size is 4096, which is
much larger than 256 used in Figure 3. This is because the
sieving procedure to suppresses the noise from dominant
labeling becomes more crucial when querying large super-
pixels. The experimental setup used in Figure 8 is identical
to that of Figure 3d.

Further rounds on Cityscapes. To demonstrate the effi-
cacy of our method across various budgets, we experiment
by gradually increasing the budget as illustrated in Figure 9
on Cityscapes. The experimental setting in Figure 9 re-
mains consistent with that of Figure 3a. The advantage
of our method over SP [4] is continued in further rounds.
We remark that the proposed method nearly achieves the
95% mIoU of the fully supervised model (71.95%) at 300k
clicks, whereas SP does at 400k clicks.

B. Rationale for line 3 of Algorithm 2
We explain the rationale behind traversing nodes in the

descending order of uncertainty in line 3 of Algorithm 2.



(a) Merging superpixels with low 10% uncertainty (b) Merging superpixels with high 10% uncertainty (c) Merging all superpixels

Figure 10: Qualitative results for partial merging. The cyan boxes encompass superpixels exhibiting the highest 10% un-
certainty, while the red boxes encompass superpixels with the lowest 10% uncertainty. (b) By merging only a portion of
superpixels in the order of high uncertainty, we can reduce time complexity, as it creates similar merged superpixels com-
pared with the cyan box in (c).

Methods mIoU

SP [4] 63.77

AMSP+S (ϕ(s; θ) = 0.0) 65.35

AMSP+S (ϕ(s; θ) = 0.2) 61.80

AMSP+S (ϕ(s; θ) = 0.4) 57.77

AMSP+S (ϕ(s; θ) = 0.6) 45.84

AMSP+S (ϕ(s; θ) = 0.8) 38.99

AMSP+S (Kneedle [30]) 66.53

Table 6: Various sieving methods. Experiments are con-
ducted on Cityscapes dataset with an average superpixel
size of 256, using 100k costs for two rounds.

Our merging process requires a linear time complexity pro-
portional to the size of the base superpixels graph. However,
due to the advantage of merging in descending uncertainty
order, we are able to acquire merged superpixels with con-
siderable uncertainty at the beginning of merging. To re-
duce merging time complexity, we only merge the top 10%
of base superpixels with the highest uncertainty as query
candidates. Table 5 shows that it is important to priori-
tize the merging highly uncertain superpixels, and merg-
ing along the ascending order of uncertainty degenerates the
performance.

In Figure 10, we exemplify the merged superpixels from
the partial merging in the ascending or descending order
of uncertainty, and the full merging, where the cyan boxes
contain higher values of acquisition function than the red
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Figure 11: Examples of knee points on Cityscapes. We ob-
tain (a) a high knee value for the common road class and (b)
a low knee value for the rare pole class.

boxes. The partial merging with the ascending order of un-
certainty regrettably merges the superpixels that would not
be selected in AL, while that with the ascending order effi-
ciently combines the base superpixels of which selection is
highly like. This difference indeed results in a huge gap in
the final performance as shown in Table 5.

C. Rationale for the adaptive threshold ϕ(s; θ)
in the sieving

We provide the reason for introducing the threshold
function ϕ(s) personalized for each superpixel s, described
in Section 3.3. We obtain the dominant label D(s) for a
queried superpixel s, however, we only propagate the label
to pixels x ∈ s that are predicted to have a positive impact
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Figure 12: Class-wise IoU according to ϕ(s; θ). Applying the same ϕ(s) of 0.6 to all pixels results in excessive sieving for
relatively rare classes, leading to decreased performance for these classes (e.g. Light, Rider, and Motorcycle). Based on the
ground-truth, class labels are organized in order of the total pixel count for each class.

(a) Semantic segmentation (b) Panoptic segmentation (c) Oracle superpixels (ours)

Figure 13: Difference between conventional segmentations and oracle superpixels. (a) When sharing the same class label,
they are depicted as identical superpixels (i.e. green color on separate trees). (b) Although a building is divided by a pole,
it is represented as a single superpixel (i.e. cyan color). (c) We consider a building as two distinct superpixels (i.e. cyan and
light yellow colors).

on the training of model θ as:

h(s; θ) := {x ∈ s : fθ
(
D(s);x

)
≥ ϕ(s; θ)} , (16)

where fθ (D(s);x) implies the confidence of pixel x to
dominant label D(s) given θ and ϕ(s; θ) determines the de-
gree of sieving. In Table 6, we study the effect of various
ϕ(s; θ). When the same ϕ(s; θ) is applied to all pixels, it
causes class imbalance by leaving relatively easy classes as
described in Figure 12. To avoid this issue, we utilize the
Kneedle algorithm [30] to obtain different ϕ(s; θ) for each
superpixel s. Specifically, ϕ(s; θ) is a knee point of the cu-
mulative distribution function of values of fθ

(
D(s);x

)
in

superpixel x ∈ s. However, for the Kneedle algorithm to
work accurately, the curve of cumulative distribution must
be either convex or concave. In addition, the algorithm may
provide inaccurate knee points on very smooth curves. To
address this issue, we use a subset of uniformly sampled
values based on fθ(D(s);x), instead of using the distribu-
tion for all pixels. We sample 20 and 5 pixels for Cityscapes
and PASCAL datasets, respectively. In Figure 11, different

knee points are detected according to the dominant class of
superpixels.

Effect of sieving. Our sieving method exhibits a signifi-
cant effect on larger superpixels, as illustrated in Figure 3c
and Figure 8. Especially, in Figure 8 with a large base su-
perpixel size of 4096, the first sieving excises 45.87% of
the mislabeled pixels that disagree with their dominant la-
bels. Furthermore, we observe that the sieving is progres-
sively refined round by round. For instance, in Figure 3a,
the portion of the mislabeled labels removed by the siev-
ing increases over four rounds as follows: 3.58%, 8.54%,
10.46%, and 12.43%. Our sieving technique enhances label
quality by retaining only high-confidence labels and contin-
uously improves through multiple rounds.

D. Further discussion on the oracle superpixels
In Section 4.1, we introduce the oracle superpixels,

which we believe is an achievable optimal set of superpixels
for active learning. For clarification, we provide the detailed
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(a) Semantic segmentation
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(b) Panoptic segmentation
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Figure 14: Relationship between AF(G;S) and mIoU varying G. AF(G;S) and mIoU exhibit a high correlation when
ground-truth G is represented by the panoptic segmentation and oracle superpixels in Figure 13. For the correlation calcula-
tion, Oracle in Table 1 is excluded.
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Figure 15: Relationship between metrics and mIoU. The correlation between AF(G;S) and mIoU is especially high. For the
correlation calculation, Oracle in Table 1 is excluded.

process of generating the proposed oracle superpixels. In
addition, we provide further insights into the achievable no-
tion of optimal superpixels.

The Cityscapes dataset is equipped with the ground-
truth annotations for semantic segmentation, represented by
dense pixel-wise labels: i.e., each pixel in an annotated im-
age is assigned an ID that represents a ground-truth seman-
tic category (Figure 13a). In such annotation, each group
of pixels that share the same ID aligns perfectly with the
boundary of semantic objects. However, each such group is
not guaranteed to be a single-connected component of pix-
els. For example, different cars in Figure 13a are assigned

the same blue color despite being physically separated, and
a car divided into two parts due to an obstructing pole is still
colored blue. This is opposed to what we hope to achieve
by merging two adjacent superpixels repeatedly. To address
this issue, we subdivide each superpixel as necessary to en-
sure that every pixel within a superpixel is adjacent to each
other. We utilize OpenCV [3] and Shapely [14] to iden-
tify the maximal connected component of pixels sharing the
same semantic. We apply the same procedure to annotated
images in the PASCAL dataset Figure 13 illustrates the dis-
tinction between conventional semantic and panoptic seg-
mentation and our oracle superpixels.



(a) Adaptive merged (t = 1) (b) Adaptive merged (t = 2) (c) Adaptive merged (t = 3) (d) Adaptive merged (t = 4)

Figure 16: Qualitative results with varying round. (a-d) Superpixels generated with proposed adaptive merging at rounds 1
to 4. Thanks to the improved model, we observe that the merging becomes more accurate as the round increases. We use the
model reported in Figure 3a.

(a) Adaptive merged (ϵ = 0.05) (b) Adaptive merged (ϵ = 0.1) (c) Adaptive merged (ϵ = 0.15) (d) Adaptive merged (ϵ = 0.2)

Figure 17: Qualitative results with varying ϵ. (a-d) Superpixels are generated with proposed adaptive merging with ϵ: 0.05,
0.1, 0.15, 0.2. We observe that an increase in ϵ gives more aggressive merging. Merging is conducted on Cityscapes with a
base superpixel size of 256.

The Cityscapes and PASCAL datasets are divided into
327k and 16k oracle superpixels, respectively. It is worth
noting that the PASCAL has a lower number of oracle su-
perpixels due to the smaller number of classes per image.
In other words, only a few objects are of interest in each
image, and the rest are simply treated as the background.

E. Further analysis on the achievable metrics
In Table 1, we evaluate various superpixels using eight

metrics with oracle superpixels as ground-truth G. Figure

15 shows the correlation between each metric and mIoU.
We observe that our AF(G;S) can be utilized to look-ahead
a model’s performance in active learning without training.
In addition, we examine how different ground-truth G im-
pacts AF(G;S). In the field of semantic segmentation, two
conventional segmentations, semantic and panoptic seg-
mentations in Figure 13, are widely used as ground-truth.
Figure 14 indicates that using panoptic segmentation and or-
acle superpixels for G results in higher correlation between
AF(G;S) and mIoU than semantic segmentation. However,



(a) Base superpixels [35] (b) Merged superpixels (Ours) (c) Oracle superpixels

Figure 18: Qualitative results of adaptive superpixels. (a) Base superpixel generated by SEEDS [35] with size 256. (b)
Superpixels generated with proposed adaptive merging at round 4. (c) Oracle superpixels generated from the ground truth.
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Figure 19: Effect of class-balanced acquisition function. According to the ground-truth, class labels are arranged based on
the total pixel count for each class, i.e. classes become rarer in images as you move from left to right along the x-axis. We
observe that classes on the left are selected less with the class-balanced term, while classes on the right are selected more.

obtaining panoptic segmentation requires more costs than
semantic segmentation since it utilizes additional instance
information. It is worth noting that our oracle superpixels
(Figure 13c) can be easily generated even in cost-limited
practical situations as they are produced from semantic seg-
mentation (Figure 13a).

F. Additional qualitative adaptive superpixels
To facilitate comprehension of the merged superpixels,

we display superpixels generated across diverse settings.
The appearance of merged superpixels is mainly determined
by the model’s performance and ϵ. Figure 16 highlights that
as the round progresses, the model’s performance improves,
leading to more accurate merging. With the model fixed at
round 4, Figure 17 shows the impact of adjusting ϵ. As ϵ



Notations Description

I the set of unlabeled images

C the set of class labels

t a round

x a pixel

s a superpixel

St(i) the set of superpixels in an image i in round t

St the set of superpixels in all images in round t, St :=
⋃

i∈I St(i)

B the query budget per round

Bt the set of B selected superpixels in round t, Bt ⊂ St, |Bt| = B

θt the model at the end of round t

yθ(x) the estimated dominant label of pixel x given θ

D(s) the true dominant label of superpixel s

Dθ(s) the estimated dominant label of superpixel s given θ

G(S) := (S, E(S)) the graph consisting of the superpixels in S as nodes and the edge set E(S)
such that (s, n) ∈ E(S) for each pair of adjacent superpixels s, n ∈ S.

ϵ the hyperparameter for merging in (2)

Table 7: Notations. The notations used in the paper are defined.

grows, the merging process intensifies, ultimately decreas-
ing the overall number of superpixels. In addition, Figure
18 shows further examples of our merged superpixels.

G. Class-balanced sampling
To observe the impact of the class-balanced acquisition

function in (7), we analyze the class distribution of selected
superpixels both with and without the class-balanced term.
In Figure 19, where class labels are sorted such that the left
(road) and right (motorcycle) ends represent the most and
least popular classes, it is evident that the class-balanced
term results in a higher selection of rarer classes, as in-
tended.


