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A. Overview

This supplementary material provides additional details
of architecture, qualitative and quantitative experimental re-
sults. We describe the notation of MDCA (Sec. B) and
implementation details for experiments in the main paper
(Sec. C). We further provide additional experimental results
(Sec. D) and qualitative results (Sec. E).

B. Multi-modal Deformable Cross Attention

We adopt the deformable attention [29] and extend it
for multi-modal feature maps, denoted as multi-modal de-
formable cross attention (MDCA).

Given an input queries zq and flattened multi-modal
BEV feature maps xm = {CBEV

I ,CBEV
R ∈ RC×XY }, let

q index a query element and pq ∈ [0, 1]2 be the normalized
coordinates of the reference point for each query element
q. The multi-modal deformable cross attention (MDCA) is
defined as

MDCA(zq, pq, xm) =

H∑
h

W h

[
M∑
m

K∑
k

Ahmqk ·W ′
hmxm(ϕm(pq +∆phmqk))

]
.

(8)

h,m, k index the attention head H , multiple modalities
{CI ,CR}, and the number of sampling points K. W h ∈
RC×Cv is the output projection matrix at hth head, and
W ′

hm ∈ RCv×C is the input value projection matrix at hth

head and modality m. We use Cv = C/H following multi-
head attention in Transformers [22]. Note that separated
input value projection matrices W ′

hm are used for each
modality to make MDCA modality-specific and achieve ro-
bust fusion (e.g., sensor failure case). Both Ahmqk and
∆phmqk are obtained by linear projection over the input
queries zq , and the attention weight Ahmqk is normalized
to modalities and sampling points as

∑M
m

∑K
k Ahmqk = 1.

Function ϕm(pq) scales the normalized coordinates pq in
case two modalities have different shapes.

The proposed multi-modal deformable attention module
is designed to look over multi-modal feature maps and mul-
tiple sampling points. This can overcome spatial misalign-
ment around reference points and enable adaptive fusion
over modalities.

C. Implementation Details

This section provides the experimental settings for the
main results and ablation studies.

C.1. Pre-processing and Hyper-parameters

For the camera stream, the image backbone yields
4 levels of feature maps of stride 4, 8, 16, and 32,
and we employ SECONDFPN [23], which concatenates
output feature maps at stride 16. nn.Conv2d and
nn.ConvTranspose2d are used for downsampling and
upsampling. Given FPN feature maps, the depth distribu-
tion network outputs D size depth bins. We use uniform
discretization with a depth range of [2.0, 58.0]m and bin
size of 0.5m, resulting in D = 112.

As stated in the main paper, we first project point cloud
into an image coordinate system while preserving its depth
and features for radar stream. Note that the projection ma-
trix for radar point projection corresponds to the image
stream. Next, we voxelize radar points in the frustum coor-
dinate system (d, u, v) to have the same size with an image
frustum feature. Taking into account the sparsity and accu-
racy of radar, we use 8× downsampled pillar canvas and fur-
ther extract pillar features using SECOND backbone, which
yields 3 levels of feature maps of stride of 1, 2, and 4. Fi-
nally, SECONDFPN is employed to pillar feature maps to
output 16× downsampled size in the image width direction
and to have D = 112 in a depth direction.

We use multi scale deform attn implementa-
tion from MMCV [4] for deformable cross attention in
Multi-modal Feature Aggregation (MFA). Specifically, we
use 6 layers of MFA, 8 attention heads, and 4 sampling
points for MFA in our experiments. MFA is applied to the
single-frame camera and radar inputs and produces a fused



configs ResNet-50/101 ConvNeXt-B
optimizer AdamW AdamW
base learning rate 2e-4 1e-4
backbone learning rate 2e-4/1e-4 5e-5
weight decay 1e-4 1e-2
optimizer momentum β1, β2 = 0.9, 0.999 β1, β2 = 0.9, 0.999
batch size 64/32 16
training epochs 24 24
lr schedule step decay step decay
gradient clip 5 5
stochastic depth [8] None 0.4
layer scale [21] None 1.0

Table 1. Training settings for the main results.

BEV feature map. After, fused BEV feature maps from the
previous T timestamps are aligned to the current timestamp
and concatenated. We use T = 3 for the submission and
T = 1 for ablation studies and note that future frames are
not used.

Following standard practices in monocular 3D object de-
tection [9, 13], we set perception range [−51.2, 51.2]m with
a pillar size of (0.2, 0.2)m and a downsampling factor of 4.
As a result, the size of the BEV feature map is 128× 128.

For the BEV segmentation task, the perception range
is set to [−50.0, 50.0]m in both X− and Y−axis cen-
tered around the ego vehicle, following previous works
[20, 7, 26, 2]. The resolution of the final output is 0.5m,
resulting in 200× 200 grid map.

C.2. Training Settings

All models are trained for 24 epochs with AdamW [17]
optimizer in an end-to-end manner. Image backbones are
pre-trained on ImageNet [5]. In Table 1, we provide
ResNet [6] and ConvNeXt [15] training settings used for
our main results.

For image and radar data augmentation (in perspective
view), we use resize, crop, and horizontal flipping augmen-
tation following standard practices [9, 13]. We discard rota-
tion augmentation since the rotation can have an adverse ef-
fect when collapsing the height dimension in radar-assisted
view transformation (RVT). Note that the same data aug-
mentation is applied to the image and radar in the perspec-
tive view.

For BEV augmentation, we use random flipping along
X and Y axis, global rotation between [−π/8, π/8], and
global scale between [0.95, 1.05]. BEV data augmentation
is applied to the BEV feature map and ground truth boxes
correspondingly. Note that ground-truth sampling augmen-
tation (GT-AUG) [23] is not used in our experiments, and
we leave GT-AUG for a multi-modal setting [3, 25] as fu-
ture work.

C.3. Baselines for Ablation Studies

We conduct three baselines BEVDepth [13], Center-
Point [24], and BEVFusion [16] for camera-only, point-
only, and camera-point fusion detectors. Note that Center-
Point and BEVFusion originally take LiDAR points as input
and we replace LiDAR points (x, y, z, intensity) to radar
points (x, y, z, RCS,Doppler) without network modifica-
tion.

For BEVDepth, we use the official code1 without class-
balanced grouping and sampling (CBGS) [28] and exponen-
tial moving average (EMA).

For CenterPoint, we use MMDetection2 implementation
using PointPillar [11] backbone with (0.2, 0.2, 8)m pillar
size. Different from the official implementation, CBGS [28]
and GT-AUG [23] are discarded for fair comparisons.

For BEVFusion, we use BEVDepth for obtaining the
camera BEV feature map and CenterPoint-Pillar for point
BEV feature maps and fuse them by a single 3× 3 convolu-
tion layer following official implementation. Note that our
BEVFusion may yield better performance since our imple-
mentation uses BEVDepth for the camera stream, while the
original BEVFusion uses LSS [20].

C.4. Details of Long-Range Model

To analyze the performance of CRN over long per-
ception ranges, we increase the perception range of base-
lines to [−102.4, 102.4]m. For camera streams, we in-
crease the range of depth distribution from [2.0, 58.0]m to
[2.0, 116.0]m, and the number of depth bins is doubled to
D = 224. For point streams, the range of point cloud and
pillars are increased to correspond to the perception range.
Note that we use the same pillar size (0.2, 0.2)m and down-
sampling factor of 4, resulting in a 256 × 256 BEV feature
map for all baselines.

For training and evaluating long-range models, we in-
crease the ‘class range’ in nuScenes [1] twice to filter the
ground truth and predictions. Particularly, the class range of
car, truck, bus, trailer, and construction vehicle are 100m,
pedestrian, motorcycle, and bicycle are 80m, traffic cone
and barrier are 60m. Moreover, nuScenes filters annotation
that does not contain at least single LiDAR or radar point
inside the 3D bounding box (denote as ‘points in box fil-
tering’) for training and evaluation, but we disable this fil-
tering for thorough analysis. Thus, some moving objects
are visible on the image but do not have annotations (due
to not enough points to label), and some static objects can
have annotations but are not visible on the image (labeled on
the previous timestamp but occluded on the current times-
tamp) in our setting. Although disabling point filtering may
cause inconsistency between input data and annotation and

1 https://github.com/Megvii-BaseDetection/BEVDepth
2 https://github.com/open-mmlab/mmdetection3d

https://github.com/Megvii-BaseDetection/BEVDepth
https://github.com/open-mmlab/mmdetection3d


Method Input Car Truck Bus Trailer C.V. Ped. M.C. Bicycle T.C. Barrier mAP
CenterPoint-P [24] L 83.9 49.5 61.9 34.1 12.3 76.9 44.1 18.0 54.0 59.1 49.4
CenterNet [27] C 48.4 23.1 34.0 13.1 3.5 37.7 24.9 23.4 55.0 45.6 30.6
CenterFusion [18] C+R 52.4(+4.0) 26.5(+3.4) 36.2(+2.2) 15.4(+2.3) 5.5(+2.0) 38.9(+1.2) 30.5(+5.6) 22.9(-0.5) 56.3(+1.3) 47.0(+1.4) 33.2(+2.6)

CRAFT-I [10] C 52.4 25.7 30.0 15.8 5.4 39.3 28.6 29.8 57.5 47.8 33.2
CRAFT [10] C+R 69.6(+17.2) 37.6(+11.9) 47.3(+17.3) 20.1(+4.3) 10.7(+5.3) 46.2(+6.9) 39.5(+10.9) 31.0(+1.2) 57.1(-0.4) 51.1(+3.3) 41.1(+7.9)

BEVDepth [13] C 55.3 25.2 37.8 16.3 7.6 36.1 31.9 28.6 53.6 55.9 34.8
CRN C+R 73.6(+18.3) 44.5(+19.3) 55.6(+17.8) 22.0(+5.7) 15.4(+7.8) 50.2(+14.1) 54.7(+22.8) 48.9(+20.3) 61.4(+7.8) 63.8(+7.9) 49.0(+14.2)

Table 2. Per-class comparisons on nuScenes val set. ‘C.V.’, ‘Ped.’, ‘M.C.’, and ‘T.C.’ denote construction vehicle, pedestrian, motorcycle,
and traffic cone, respectively. CenterNet [27], CRAFT-I [10], and BEVDepth [13] are camera baselines of CenterFusion [18], CRAFT [10],
and CRN. CenterPoint-P and BEVDepth results are from MMDetection3D and the official code.

# Frames NDS mAP mATE mAOE mAVE
1 50.3 42.9 0.519 0.577 0.520
2 54.5 46.0 0.495 0.538 0.350
3 55.7 47.3 0.480 0.507 0.342
4 56.0 48.1 0.474 0.541 0.328
5 56.4 48.4 0.469 0.515 0.345

Table 3. Ablation of temporal frames.

harms performance during training, all methods are trained
and evaluated using the same setting for a fair comparison.
We find that the inference speed of CenterPoint [24] with
radar input is much faster than LiDAR input, assuming that
the sparsity of radar points can highly benefit from voxeliza-
tion and sparse convolution [23].

D. Additional Experimental Results
D.1. Per-Class Analysis

In Table 2, we compare the performance improvement
of camera-radar methods over camera-only baselines. For
fair comparisons, we report 256 × 704 and R50 mod-
els for BEVDepth and CRN. Corresponds to results on
CRAFT [10], metallic and frequently appeared on road
classes (car, truck, bus, and motorcycle) gain significant
improvements. Different from CRAFT, ours also shows a
huge improvement in non-metallic classes (pedestrian, bi-
cycle, traffic cone, and barrier). Moreover, we find that
the performance gain of using radar is much more signif-
icant on ours than other fusion methods. Considering the
performance difference of camera baselines are not signifi-
cant, results in Table 2 demonstrate that the design of fusion
methods greatly affects the performance.

D.2. Design Decisions

We study architecture designs that affect the perfor-
mance of CRN to provide insights on the proposed sensor
fusion framework.
Temporal Frames. We accumulate multiple BEV feature
maps on channel dimension by concatenation and aggregate
them by a few convolutional layers before feeding them to
the BEV backbone. We find that the time interval of 1 sec-
ond yields a better performance than 0.5 second proposed

# Top-K AP ATE AOE AVE FPS
1024 49.8 0.399 0.216 0.371 14.1
2048 52.4 0.382 0.202 0.352 14.0
4096 54.0 0.367 0.194 0.340 14.0
8192 54.6 0.362 0.191 0.352 13.8
All 56.9 0.325 0.158 0.298 11.5

Table 4. Ablation of sparse aggregation.

in previous approaches [14, 13]. Compared to temporal
stereo methods [12, 19], ours does not require sequential
data input for obtaining the BEV feature map; thus, using
an arbitrary number of BEV feature maps does not increase
latency. We note that BEV feature maps on previous times-
tamps are obtained without gradients during training fol-
lowing standard practices.

As shown in Table 3, using multiple temporal frames sig-
nificantly improves mAP, mATE, and mAVE. Correspond-
ing to results on recent approaches using temporal BEV
feature maps [19], a larger number of frames consistently
yields better performance. However, we observe the un-
stable orientation error (mAOE), suggesting room for im-
provement in utilizing BEV feature maps, and we leave this
as future work. As the performance gain is saturated on four
frames, we decide to use four frames considering computa-
tion time and memory during training.

Sparse Aggregation. In Table 4, we ablate the num-
ber of Nk feature grids on sparse aggregation settings.
Note that the total number of BEV feature grids is N =
256× 256 = 65536 in our long-range setting and we report
the performance on Car class at 100m perception range.
Since the computational complexity of sparse aggregation
O(2Nk + NkK) is linear to sparse input queries Nk, us-
ing a small set of features for MFA significantly reduces
the computation of Multi-modal Deformable Cross Atten-
tion (MDCA). More specifically, using 4096 size queries
reduce the latency of MFA by 76.4% (21.01ms to 4.96ms)
on 256 × 256 size BEV grid. However, as the BEV fea-
ture map becomes sparse and discretized after top-k sam-
pling, the performance is degraded. We find that the per-
formance drops on True Positive metrics (e.g., ATE, AOE,
AVE) are more significant than AP, assuming that the clas-
sification network can maintain its performance, but the re-



gression network suffers from sparsely spread BEV features
to regress objects’ attributes.

E. Additional Qualitative Results
We show additional qualitative results of 3D object de-

tection (long-range 256 × 704 and R50 model) and BEV
segmentation (256× 704 and R50 model).

To visualize 3D detection results for the range of 200m×
200m, we disable points in box filtering as described in Ap-
pendix C.4. As can be seen in Fig. 1, CRN is capable of
detecting objects even at a very far distance under various
and complex driving scenarios. Thanks to radar fusion, ob-
jects strongly occluded by other objects or hardly visible by
low lighting are successfully detected by ours. Moreover,
even if some objects do not have radar point returns, CRN
can still detect them by image only. Failure cases of CRN
are likely caused when objects are rare classes and do not
without radar points (e.g., construction vehicles behind wire
mesh or trailers heavily occluded).

We further visualize BEV segmentation results in the
range of 100m×100m, following the same setting of previ-
ous works. As shown in Fig. 2, CRN is also capable of accu-
rately predicting segmentation occupancy of drivable region
and vehicle. Thanks to our camera-radar fusion framework
to generate a semantically rich and spatially accurate fea-
ture map, our results show stable performance under vari-
ous lighting and weather conditions. CRN can further pre-
dict occupancy of the vehicles with a complete shape both
at nearby and faraway distances, even when the vehicles are
partially visible. In terms of the drivable region, CRN can
successfully predict the complex shapes of the road even
under occlusions.
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Figure 1. Additional qualitative results of 3D object detection on nuScenes val set: from left to right, day, rainy, and night scenarios.
Green boxes are ground truths, blue boxes are our prediction results, and black dots are radar points. We also show the failure cases and
highlight them with red circles on the bottom row. Ground truth maps on the background are used for visualization. Best viewed in color
with zoom in.



Figure 2. Qualitative results of BEV segmentation on nuScenes val set on various road shapes and weather conditions: from top to bottom,
day, rainy, and night scenarios. Images on the top are the six camera views surrounding the vehicle, the bottom left is ground truth, and the
bottom right is our prediction results. Best viewed in color with zoom in.


