
A. Detailed Description of Stride Attentions

In general, most of the time complexity of transform-

ers is highly related to the attention operation. We offer

stride attentions for efficient correlation learning between

discretized tokens. In this section, we describe details of

the proposed joint stride attention and temporal stride atten-

tion.

A.1. Joint Stride Attention

The number of pose tokens (P) can grow dynamically

based on the number of joints (R) and people appeared in a

scene. Since this is directly related to the amount of com-

putation required for attention, we propose joint stride at-

tention dividing pose tokens into several sliding windows.

Algorithm A1 describes detailed operation of the proposed

joint stride attention. According to the notations used in the

Algorithm A1, we can organize comparisons of time com-

plexity between full attention and joint stride attention as

described in Table A1.

Table A1: Complexity comparisons between full attention

and joint stride attention

Method Complexity

Full attention O(T 2R2)
Joint stride attention O(T 2wnd2)

In joint stride attention, we decompose pose tokens using

sliding window (wnd) with a stride having halved size of

wnd. If pose tokens P ∈ R
4C×T×R are fed to full attention,

the time complexity per layer becomes O(T 2R2) and the

equation is as follows:

O = [P||Mpose||M
′

CLS ] (A1)

FullAttention(OWq,OWk,OWv)

=
T∑

t

R∑

r

softmax(
OW

t,r
q OW

t,r
k√

dh
)OW

t,r
v

(A2)

However, when pose tokens are fed to joint stride atten-

tion, the time complexity per layer becomes O(T 2wnd2)
and the equation is as follows:

JointStrideAttention(OWq, ÕWk, ÕWv)

=

T∑

t

wnd∑

w

softmax(
OW

t,w
q ÕW

t,w
k√

dh
)ÕW

t,w
v

(A3)

where O and Õ from Algorithm A1. In Eq. A3, since wnd
is always less than R, the overall time complexity of joint

stride attention is smaller than full attention.

Algorithm A1 Joint stride attention

Input: Pose tokens P, Memorized CLS modal token

M
′

CLS , Pose modal token Mpose, window size wnd,

query weight Wq , key weight Wk, value weight Wv

stride← ⌊wnd/2⌋
P̂q ← ∅ ▷ query set

P̂kv ← ∅ ▷ key and value set

i← 0
while i < (R− wnd) do ▷ Split P into query set P̂q

P̂← P[:, :, i : i+ wnd] ▷ P ∈ R
4C×T×R

P̂q ← P̂q ∪ P̂ ▷ P̂ ∈ R
4C×T×wnd

i← i+ stride
if i > (R− wnd) then

i← i− wnd ▷ To assure query covers entire

tokens

end if

end while

i← stride
while i < (R− wnd) do

▷ Split P into key and value set P̂kv

P̂← P[:, :, i : i+ wnd] ▷ P ∈ R
4C×T×R

P̂kv ← P̂kv ∪ P̂ ▷ P̂ ∈ R
4C×T×wnd

i← i+ stride
end while

Dq ← |P̂q| ▷ P̂q ∈ R
Dq×4C×T×wnd

Dkv ← |P̂kv| ▷ P̂kv ∈ R
Dkv×4C×T×wnd

▷Mpose,M
′

CLS ∈ R
4C×T×1

O← [P̂q||expand(Mpose, Dq)||expand(M
′

CLS , Dq)]

Õ← [P̂kv||expand(Mpose, Dkv)||expand(M
′

CLS , Dkv)]

O← O+MSA(OWq, ÕWk, ÕWv)
O← O+ FFN(LN(O))

A.2. Temporal Stride Attention

Temporal stride attention is proposed to capture tempo-

ral changes between each sequential frame and joint. The

overall procedure is described in Algorithm A2. The num-

ber of input tokens Dn is sum of the number of RGB, pose

and cross modal tokens. To decompose these tokens into

small temporal windows, we apply sliding windows along

with the temporal dimension. The complexity comparison

result between full attention and temporal stride attention is

described in Table A2.

In the case of full attention, the time complexity of at-

tention against the concatenated tokens N ∈ R
4C×T×Dn

becomes O(T 2D2

n) and the equation is as follows:



Table A2: Complexity comparisons between full attention

and temporal stride attention

Method Complexity

Full attention O(T 2D2

n)
Temporal stride attention O(wnd2D2

n)

N = [Z||P||MRGB ||Mpose||MCLS ] (A4)

FullAttention(NWq,NWk,NWv)

=

T∑

t

Dn∑

n

softmax(
NW

t,n
q NW

t,n
k√

dh
)NW

t,n
v

(A5)

On the contrary, when the concatenated tokens are de-

composed into several sliding windows, the time complex-

ity per layer becomes O(wnd2D2

n) and the equation is as

follows:

TemporalStrideAttention(N̂qWq, N̂kvWk, N̂kvWv)

=
wnd∑

w

Dn∑

n

softmax(
N̂qW

w,n
q N̂kvW

w,n
k√

dh
)N̂kvW

w,n
v

(A6)

where N̂q and N̂kv from Algorithm A2. In this case, be-

cause wnd is always less than T , the overall time complex-

ity of temporal stride attention is smaller than full attention.

B. Detailed Description of 3D Deformable At-

tention

In this study, we proposed the 3D deformable attention

to adaptively capture not only long-term temporal relations

but also spatial relations simultaneously. Inspired by Xia et

al. [1], we rebuilt a deformable attention transformer (DAT)

applicable with various video tasks including action recog-

nition. Our proposed method finds discriminative tokens

across 3D space while the DAT leverages only 2D space

tokens. Details are described in Algorithm A3.

C. On the fly frames in test phase.

The proposed method showed a good performance on

several benchmarks using the suggested modules for cap-

turing temporal changes. According to the Fig. 5 (b) in the

paper, it was observed that the performance has a high rele-

vance for the number of input frames in training phase. For

that reason, we assumed that if the model well captures spa-

tiotemporal relations on dense frame condition in training,

Algorithm A2 Temporal stride attention

Input: RGB tokens Z, Pose tokens P, CLS modal to-

ken MCLS , RGB modal token MRGB , Pose modal token

Mpose, window size wnd, query weight Wq , key weight

Wk, value weight Wv

stride← ⌊wnd/2⌋
N̂q ← ∅ ▷ query set

N̂kv ← ∅ ▷ key and value set

N← [Z||P||MRGB ||Mpose||MCLS ]
Dn ← (H

8
× W

8
+R+ 3) ▷ The number of tokens

i← 0
while i < (T − wnd) do ▷ Split N into query set N̂q

N̂← N[:, i : i+ wnd, :] ▷ N ∈ R
4C×T×Dn

N̂q ← N̂q ∪ N̂ ▷ N̂ ∈ R
4C×wnd×Dn

i← i+ stride
if i > (T − wnd) then

i← i− wnd ▷ To assure query covers entire

tokens

end if

end while

i← stride
while i < (T − wnd) do

▷ Split N into key and value set N̂kv

N̂← N[:, i : i+ wnd, :] ▷ N ∈ R
4C×T×Dn

N̂kv ← N̂kv ∪ N̂ ▷ N̂ ∈ R
4C×wnd×Dn

i← i+ stride
end while

N← N̂q +MSA(N̂qWq, N̂kvWk, N̂kvWv)
N← N+ FFN(LN(N))
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Figure A1: Ablation study with different numbers of frames

during test phase against model trained with 12 frames.

then it will be able to defense degradation of performance

on sparse test frames. In practical application, some models

may have to be run in sparse frames due to environmental



Algorithm A3 3D deformable attention

Input: RGB tokens Z, CLS modal token MCLS , RGB

modal token MRGB , query weight Wq , key weight Wk,

value weight Wv , kernel size k, 3D conv block foff ,

bilinear sampling function g, trainable parameter ω
function 3DTS(Z;ω)

Z← reshape(Z) ▷ Z ∈ R
4C×T×H

8
×W

8

∆p← tanh(foff (Z;ω)) ▷ ∆p ∈ R
3×T̃×H̃×W̃

p← reference points from 3D grid

▷ p ∈ R
3×T̃×H̃×W̃

Initialize Z̃ ∈ R
4C×T×H

8
×W

8

for (px, py, pz) ∈ p+∆p do

z̃← 0
for (rx, ry, rz) ∈ [{1...W

8
}, {1...H

8
}, {1...T}] do

▷ get spatiotemporal coordinates r{x,y,z}
ϕ← g(px, rx)g(py, ry)g(pz, rz)
z̃← z̃ + ϕZ[:, rz, ry, rx]

end for

Z̃[:, pz, py, px]← z̃
end for

return flat(Z̃)
end function

Initialize 3D conv. parameter (ω) with k
Z̃← 3DTS(Z;ω)
X, X̃← [Z||MRGB ||MCLS ], [Z̃||MRGB ||MCLS ]
X← X+MSA(XWq, X̃Wk, X̃Wv)
X← X+ FFN(LN(X))

limitations. We provided the evaluation results by diversi-

fying the number of input frames in a model trained using

12 frames. The results verify the power of the spatiotempo-

ral feature learning of the proposed method. In Fig. A1, the

proposed method shows a uniform performance for various

numbers of input frames. Therefore, the proposed method is

robust in learning spatiotemporal features, even if the num-

ber of testing frames is sparse.

D. Additional Qualitative Results

D.1. Additional Joint Stride Attention Visualization

We present the result of analyzing the role of each pose

token in cross-modal learning. The visualizations of each

pose token for more diverse actions are shown in Fig. A2.

D.2. Additional 3D Deformable Attention Visual-
ization

In this section, we provide additional visualization of

3D deformable attention for more diverse actions on each

dataset. In the case of PennAction, attention is accurately

appeared to the person who is the subject of the action

even in complex backgrounds as shown in Fig. A3, and

it can be seen that attention is occurring intensively in the

frame representing the action. In terms of FineGYM, it con-

sists of fine-grained gymnastic frames with dynamic cam-

era moving. Our proposed 3D deformable attention ac-

curately tracks gymnasts performing dynamic movements

as shown in Fig. A4, and clearly understands the differ-

ences in each fine-grained actions, even for actions using

the same equipment but with different labels. In the case

of NTU120, which has a relatively simple background, the

proposed method accurately finds key elements for various

actions. The interaction between two people is also well

tracked, especially in the case of the ‘pick up’ action label,

the actor’s action is important, but the fact that there is a

dropped object may be more important to accurately clas-

sify this action as shown in Fig. A5.

References

[1] Zhuofan Xia, Xuran Pan, Shiji Song, Li Erran Li, and Gao

Huang. Vision transformer with deformable attention. In

CVPR, pages 4794±4803, 2022. 2



(a) baseball swing

(b) golf swing

(c) tennis serve

Figure A2: Visualization of joint stride attention on PennAction
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