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1. Details of EP2P-Loc
1.1. Feature aggregation for global matching

We extract 2D patch descriptors and 3D point descrip-
tors using our image transformer and point transformer,
respectively, described in Section 3.1 in the main paper.
We then use NetVLAD [1] to aggregate these local de-
scriptors into a global descriptor. The NetVLAD learns
C cluster centers, denoted as

{
v1, · · · ,vC | vc ∈ RFdim

}
,

and generates a (Fdim ×C)-dimensional VLAD descriptor
FV LAD =

{
F 1

vlad , · · · ,FC
vlad

}
, where Fdim is the dimen-

sion of the 2D patch descriptor and 3D point descriptor. We
compress this (Fdim × C)-dimensional VLAD descriptor
into a 256-dim vector using a fully connected layer with an
L2 normalization to produce the final global descriptor vec-
tor. Global descriptors are used to reduce search space from
the 3D global reference map by retrieving relevant submaps
from the database, which is called global matching. We set
Fdim = 128 and C = 64, and finally obtain a 256-dim
global descriptor from 128-dim local descriptors.

1.2. Invisible points removal algorithm

Our Invisible 3D Point Removal (IPR) algorithm aims
to mitigate appearance discrepancy between the 2D image
I ∈ RH×W×3 and the corresponding positive 3D point
cloud submap P ∈ RM×3 by removing invisible 3D points
from the image before extracting point cloud features. The
depth map D ∈ RH×W×1 is generated by projecting the
3D points in P on the image I . We transform each 3D point
(xi, yi, zi) in P into the camera coordinate system, and use
z-coordinate as a depth value as follow:
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where (xc
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c
i ) indicates the coordinates in the cam-

era coordinate system. As in the main paper, rotation ma-
trix R and translation vector t represent the camera pose
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Figure 1: Results of our IPR algorithm in a toy example.
(a) The toy example image (top) and 3D point cloud (bot-
tom). (b) Removal results using single min-pooling (top)
and max-pooling (bottom). (c) Result of our IPR algorithm
(top) and the set of removed 3D points (bottom).

(R, t) ∈ SE(3), and π is a function that projects 3D points
of the camera coordinate system to 2D points of the im-
age coordinate system based on the camera intrinsics K.
We then apply min-pooling and max-pooling sequentially,
both with the same kernel size s (= 9), so that points for
which the depth decreases after the two pooling layers are
considered as occluded points. For every 3D point within
the point cloud submap P , called a query point, our IPR al-
gorithm employs min-pooling to locate nearby points, and
then utilizes max-pooling to determine if these points en-
compass the queried point. This prevents 3D points from
invisible objects from being projected onto other pixels and
getting mixed together, which could happen due to the sub-
stantial amount of empty space within the 3D point cloud.
Invisible and visible points are not guaranteed to have re-
spectively minimum and maximum depth around them, so



(a) Point cloud (b) s=3 (c) s=5 (d) s=7 (e) s=9 (f) s=11

Figure 2: Results of our IPR algorithm using different kernel size s from 3 to 11 on the 2D-3D-S dataset [2]. The kernel size
for both min-pooling and max-pooling is set to s.
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Figure 3: The average number of 3D points after applying
our IPR algorithm with different kernel size s on the 2D-
3D-S dataset [2]. The number of 3D points is obtained from
the point cloud submaps in the database.

single min-pooling or max-pooling does not work well, as
shown in Figure 1. The removal method using a single pool-
ing layer does not properly remove invisible points. The
min-pooling leaves only the locally closest points, and the
max-pooling removes only the locally farthest points. Our
IPR algorithm effectively detects the 3D points behind the
surface by checking whether the closer points surround the
point. As a result, our IPR algorithm can highly reduce the
ratio of invisible points and helps to train efficiently in later
steps. Note that the time complexity of the IPR algorithm is
O(M +HWs2), but can be implemented as O(M +HW )
by using a sliding window, or O(Ms2) with a sparse pool-
ing [8]. Invisible 3D points have no information that can
be matched to 2D pixels in the image, which can result in
incorrect 2D-3D correspondences. Therefore, our IPR algo-
rithm can be used to learn which 3D points can be matched
to 2D pixels.

Our IPR algorithm has two limitations. Firstly, our cri-
teria for identifying invisible points to be surrounded by

neighboring closer points may lead to the exclusion of lo-
cal depth minima on concave surfaces or corners. In the toy
example in Figure 1c, points positioned between the sphere
and the plane also vanish. However, this primarily occurs
with points situated backward rather than those belonging
to foreground objects, and there isn’t significant removal of
edges within the 3D space. Secondly, our algorithm strug-
gles to effectively eliminate occluded points when there is a
substantial disparity in depth. Owing to perspective effects,
the distance between 3D points on nearby surfaces appears
greater than that on distant surfaces. If surfaces are closely
situated, it might not be feasible to enclose distant points
with those on the surface, and the distant points located be-
hind the surface may not be removed well.

These two limitations of our IPR algorithm involve a
trade-off depending on the kernel size s, as illustrated in
Figure 2. As s decreases, fewer local minima are elimi-
nated from the depth map, but the removal performance de-
creases even with a slightly closer surface; conversely, as
s increases, more local minima are removed, but the algo-
rithm is robust to closer surfaces. The scope of erroneously
eliminated local minima and the upper limit on the distance
between 3D points within a surface are proportional to s.
As s increases, more 3D points are removed, as shown in
Figure 3, there are 65, 536 points in each point cloud before
removal, but as s changes between 3 and 11, the average
number of points after removal changes from 3.81× 104 to
1.85 × 104. Considering this trade-off and the number of
points remaining after removal, we choose s = 9. Note that
point density and image size can also affect the appropriate
s, for example, sparser point clouds and larger images might
necessitate a larger s. For our IPR algorithm, we work with
point clouds containing 65, 536 points and generate depth
maps with dimensions of 512× 512 pixels.



Figure 4: Accumulated point cloud map of the Oxford
RobotCar dataset [16]. We utilize a sequence collected at
2014-06-26 09:31:18 and calculate poses using the INS
pose sensor. Due to imprecise poses, the ground plane is
represented in a different location upon revisitation.

2. Benchmark datasets
2.1. Dataset selection

Poses for the large-scale outdoor datasets [5, 10, 16]
are acquired through Inertial Navigation System (INS) or
Global Positioning System (GPS), whereas the Oxford
RobotCar dataset [16] employs visual odometry. The global
pose can be calculated using the output from INS or GPS,
but it is not locally consistent due to GPS errors and accu-
mulation errors. To construct a large 3D point cloud map,
we need to aggregate each LiDAR point cloud with its cor-
responding pose. Without using accurate LiDAR poses, the
surface is duplicated due to inconsistent poses, as seen in
Figure 4, which removes fine details from the point cloud.
Consequently, the utilization of INS and GPS is unsuitable
for tasks involving localization and registration using point
clouds. Visual odometry, used in the image-to-point cloud
registration task [15], provides a locally consistent relative
pose between the point cloud and the corresponding im-
age. However, due to accumulation errors inherent in visual
odometry, the pose lacks temporal consistency, and as a re-
sult, revisiting the same place in different timestamps does
not guarantee a similar pose. As a result, the visual odom-
etry is also inadequate for the image-to-global point cloud
localization.

2.2. Dataset preprocessing

We select Stanford 2D-3D-Semantic (2D-3D-S) [2] and
KITTI [11] datasets to establish benchmarks. These datasets
include database point clouds, query images, global poses
of point clouds and images, and camera intrinsics. The 2D-
3D-S dataset contains 6 areas scanned by the MatterPort
camera, which gives RGB-D data. Each area contains RGB
images, depth, surface normals, global XYZ images, and a
global point cloud, where the global point cloud is identi-
cal to the global point cloud of S3DIS [3]. There are about
50 images taken at each camera location but at different
angles, and a maximum of 20 images are selected to con-
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Figure 5: Global point cloud map of the 2D-3D-S dataset
(Area 1) [2]. (a) Original global point cloud map. (b) Point
cloud map built from SfM using 2D images in Area 1.

strain the number of test images. The InLoc dataset [18],
widely used in indoor visual localization task, collects train-
ing images exactly at 30◦ intervals. We sample RGB im-
ages for training and test so that the angles between the im-
ages taken at the same location do not differ by less than
30◦ and 15◦, respectively, following the InLoc’s setting. For
the coarse-to-fine matching approach, we provide the global
point cloud maps along with small submaps. We divide the
global point cloud map of S3DIS into fixed-size submaps
visible in the training image frames within 10m and down-
sample to have 65, 536 points. We follow the 3-fold cross-
validation scheme of 2D-3D-S as shown in Table 1 in the
main paper, which evaluates the performance of pose esti-
mation for unseen places during training. In each Fold, the
database for the test areas is constructed by collecting the
training data for those areas that are not used during train-
ing. For example, the database for the Fold 3 consists of the
training data from Areas 2, 4, and 5 combined.

The KITTI dataset is built with Velodyne HDL-64E, a
3D LiDAR, and we accumulate all 3D point clouds to ob-
tain a global point cloud map. The query images are from
Cam2 among 4 Point Gray Flea 2 cameras, the RGB cam-
era installed at the center of the vehicle. There are 11 se-
quences numbered 00 to 10 that have ground-truth poses,
and we split the sequences 00 to 08 for training and the se-
quences 09 to 10 for testing. Since the ground-truth poses
from the KITTI dataset are relative poses to the camera pose
from the first frame, we need to define a reference pose to
use as the world coordinate system. We utilize the LiDAR
pose from the first frame as the world coordinate system
so that the z-axis is perpendicular to the ground as in the
2D-3D-S dataset. Images are collected every 2m from the
trajectory without any special preprocessing. We construct
a single 3D global point cloud map from each sequence in
the dataset by accumulating 3D LiDAR data. Similar to the
2D-3D-S, we divide the global point cloud map into small
submaps containing the 3D points in the corresponding im-
age frame within 30m, and downsample the collected point
clouds to have 65, 536 points. There are samples of 2D-3D-
S and KITTI in Figure 8 and Figure 9, respectively.



Fold 1 Fold 2 Fold 3
Model (0.1, 1.0) (0.25, 2.0) (1.0, 5.0) (0.1, 1.0) (0.25, 2.0) (1.0, 5.0) (0.1, 1.0) (0.25, 2.0) (1.0, 5.0) # of points # of inliers Runtime

EP2P-Loc w/o IPR 88.12 90.33 92.75 91.57 94.12 94.89 83.23 86.36 88.29 65.5K 3.12K 6.981s
EP2P-Loc w/ EPnP [13] 85.34 87.51 90.23 90.23 92.34 93.78 83.56 84.96 87.13 20.4K 0.32K 12.53s

EP2P-Loc w/ SfM [17] 82.18 84.88 89.23 87.43 90.11 92.31 81.97 84.23 86.09 4.10K 0.69K 9.53s

EP2P-Loc (Ours) 87.59 91.65 92.89 92.47 93.88 94.38 85.24 87.38 89.43 20.4K 2.73K 3.482s

Table 1: Ablation study on the 2D-3D-S dataset [2]. The threshold units are (m, ◦). The number of points is reported with
the average value per point cloud submap in the training set. The number of inliers and runtime are reported with the average
value per image in the test set, and runtime is measured with the overall pipeline including data loading to pose estimation.

# of points
Area Original point cloud map SfM [17]

1 44.0M 122K
2 47.3M 381K
3 18.7M 49K
4 43.5M 322K
5 78.6M 276K
6 41.4M 118K

Table 2: The number of points in the point clouds of the 2D-
3D-S dataset [2], and the point clouds built from SfM [17]
using the 2D images in the 2D-3D-S dataset.

2.3. Oxford RobotCar dataset

We also experiment with the Oxford RobotCar dataset
[16] for further comparison with image-to-point cloud
registration methods such as DeepI2P [15] and 2D3D-
MatchNet [9]. Among the sequences in the Oxford Robot-
Car dataset, we use 40 sequences and split 35 for training
and 5 for testing according to DeepI2P’s setting. For each
sequence, images and 3D point clouds are collected every
2m. We use the image from the center camera of the Bum-
blebee XB3 stereo camera, and remove the lower 20% pix-
els to eliminate the vehicle in the image. We accumulate
the 2D point clouds from the front LMS-151 for a 100m
trajectory to create the 3D point cloud. The center of the
point cloud is randomly selected at a location where the
Chebyshev distance (i.e. L∞) is within 10m from the cam-
era location. We use padding and downsampling to ensure
that each point cloud has 262, 144 points. For a fair com-
parison with image-to-point cloud registration methods, we
take each image and point cloud pair as input, and evaluate
the estimated relative pose between them. We show several
samples in Figure 10.

3. Experiments
3.1. Results of image-to-point cloud registration

Similar to the KITTI dataset [11], we train on the Ox-
ford RobotCar dataset [16] and compare the image-to-point
cloud registration methods [9,15] in Table 3. While we em-
ploy 40 sequences from the Oxford RobotCar dataset, all

of them originate from the same geographical location with
different illumination and weather conditions. This result
shows that EP2P-Loc can localize robustly even when the
timestamp changes significantly with showing illumination
and weather changes.Furthermore, our approach surpasses
the performance of previous methods.

3.2. Comparison with the 3D point cloud generated
by Structure from Motion (SfM)

We evaluate EP2P-Loc with 3D point clouds created by
the Structure from Motion (SfM), not LiDAR or RGB-D
sensors. Using COLMAP [17], we generate a 3D reference
map from the images in the 2D-3D-S dataset [2] of our
benchmark datasets. We do not utilize any other informa-
tion from the SfM, for example, 2D keypoint coordinates or
2D-3D correspondences. As shown in Figure 5, these point
clouds are sparser and noisier than those generated by Li-
DAR or RGB-D sensors. The SfM calculates 3D points by
triangulating 2D keypoints. However, when the keypoints
are sparse, such as on a featureless wall, it may not be pos-
sible to triangulate the 3D points. Moreover, the presence
of similar textures can lead to the triangulation of incorrect
keypoint pairs that share resemblant features but are situated
in different locations, resulting in noisy 3D points. As a re-
sult, the point cloud generated from the SfM only contains
coarse geometry, and the walls are represented sparsely. We
follow the same preprocessing as in the 2D-3D-S dataset,
but downsample the point cloud submaps to have 4, 096
points due to the sparsity of the point clouds as shown in
Table 2 and Figure 5.

Due to the sparsity of the point cloud constructed by the
SfM, we retrieve the top-7 database point cloud submaps
without using the IPR algorithm for evaluation. As demon-
strated in Table 1, EP2P-Loc model trained with the SfM-
derived point cloud map shows a performance discrepancy
of less than 7% when compared to the model trained using
the global point cloud map of the 2D-3D-S. This shows that
our model can successfully localize by only utilizing 3D
point information from the SfM model created from 2D im-
ages, which is also noisier and more than 200 times sparser
than the original global point cloud. As a result, our model
can localize regardless of whether the database consists of



Oxford [16] KITTI [11]
Model RTE (m) RRE (◦) RTE (m) RRE (◦)

Direct Regression 5.02 ± 2.89 10.45 ± 16.03 4.94 ± 2.87 21.98 ± 31.97
Monodepth2 [12] + USIP [14] 33.2 ± 46.1 142.5 ± 139.5 30.4 ± 42.9 140.6 ± 157.8
Monodepth2 + GT-ICP [4, 7] 1.3 ± 1.5 6.4 ± 7.2 2.9 ± 2.5 12.4 ± 10.3

2D3D-MatchNet [9] 1.41 6.40 752.5 ± 6053.3 117.9 ± 52.1

Grid Cls. + PnP [13, 15] 1.91 ± 1.56 5.94 ± 10.72 3.22 ± 3.58 10.15 ± 13.74
DeepI2P [15] 1.65 ± 1.36 4.14 ± 4.90 3.28 ± 3.09 7.56 ± 7.63

Patch Cls. + PnP (Ours) 1.24 ± 1.17 4.23 ± 6.78 2.83 ± 2.89 6.32 ± 5.63
EP2P-Loc (Ours) 0.87 ± 1.39 4.03 ± 5.32 1.32 ± 1.13 4.11 ± 5.46

Table 3: Experimental results of image-to-point cloud registration on the Oxford [16] and the KITTI [11] dataset. We provide
the 2D3D-MatchNet [9] results on the KITTI dataset of our implementation.

Figure 6: Visualization of the differentiable PnP solver [6]
weights of each point in the point cloud. Red color has a
higher value, and black color has a lower value.

RGB images, RGB-D images, or LiDAR sensor data.

3.3. Analysis of our 2D patch classification

In our EP2P-Loc, pose estimation is also possible by
finding coarse correspondences using only 2D patch clas-
sification without 2D pixel coordinate calculation. Similar
to DeepI2P, the correspondence is used as a 3D point with
the center of the classified patch. As shown in Table 3, our
Patch Cls. + PnP outperforms both DeepI2P [15] and Grid
Cls. + PnP, and is not significantly different from EP2P-Loc.
This shows that 2D pixel coordinate calculation only gives
a finer correspondence, and our pipeline is better than grid
classification from DeepI2P even without pixel coordinate
calculation.

3.4. Visualization

We present qualitative results evaluated on our bench-
mark datasets. Figure 7 illustrates the results of some near-
est neighbor searches using the global descriptor on the 2D-
3D-S [2] evaluation set. The leftmost column represents the

query image, and the next four results show the top 4 re-
trieved point cloud submaps of the database. The results in
green indicate correct matches (true positive) and the ones
in red indicate incorrect ones (false positive). As shown in
the red-boxed examples in Figure 7, the failure cases are
structurally similar point clouds in the evaluation set.

Figure 6 shows the visualizations of 2D-3D correspon-
dences depicted by the weights used in the differentiable
PnP solver. Each point is marked with a different color
based on the weight value from our differentiable PnP
solver module, with redder points having a higher weight.
The 2D-3D correspondence is much less distributed over
empty space in 3D space, and is concentrated in areas with
clear geometry (3D features) or distinct texture (2D fea-
tures), as shown in Figure 6. We put these weighted 2D-3D
correspondences to the differentiable PnP solver for end-to-
end training, which leads to the state-of-the-art performance
of our method.
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Figure 8: Examples of 2D-3D-S dataset [2]. (a) RGB images. (b) Corresponding point cloud submaps. (c) Submaps after
removing invisible points from (b). (d) Projected 3D points (c) into (a).
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Figure 9: Examples of KITTI dataset [11]. (a) RGB images. (b) Corresponding point clouds. (c) Point clouds after removing
invisible points from (b). (d) Projected 3D points (c) into (a).

(a) (b) (c) (d)

Figure 10: Examples of Oxford RobotCar dataset [16]. (a) RGB images. (b) Corresponding point clouds. (c) Point clouds
after removing invisible points from (b). (d) Projected 3D points (c) into (a).


