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A. Details on LDL
Principal Direction Computation We explain the details
of principal direction computation. Recall that the principal
directions in 2D and 3D are defined as the top k2D and k3D
most common line directions. The 2D principal directions
are extracted from vanishing points. When parallel lines are
projected on an image, they appear to converge at a point,
which is referred to as a vanishing point. To locate vanish-
ing points, we extrapolate detected line segments and find
their intersections. Since we are using panoramic images,
we use spherical projection of lines and vanishing points.
Specifically, we create a uniform spherical grid and count
the number of intersection points in each grid cell, which
we referred to as ‘voting’ in the main paper. We select the
top k2D grid locations with the most votes as the 2D prin-
cipal directions. For 3D principal directions, we similarly
aggregate votes for 3D line directions and extract the top
k3D votes. Note that we fix the filtering parameters for all
our experiments and LDL achieves competitive results.

Line Filtering Prior to localization, recall from Section
3.1 that LDL filters short lines. Specifically, given the point
cloud with the bounding box size of bx × by × bz , we filter
out 3D line segments shorter than λ(bx+ by + bz)/3, where
λ = 0.1 in all our experiments. The 2D line segments are
then filtered to match the filtering rate of 3D line segments.
Note the threshold parameter λ does not play a critical role
in performance. Figure A.1 shows the median localization
error measured in Room 1 from OmniScenes [5]. The errors
are nearly constant with respect to varying λ.

Spherical Quadrilateral for Computing Line Distance
Functions We illustrate the spherical quadrilateral used
for computing distance functions from Section 3. As shown
in Figure A.2, given a line segment l on a sphere with a
start point s and an end point e, the spherical quadrilateral
Q(s, e) is formed by connecting {s, e,±(s× e)/∥s× e∥}.
The spherical quadrilateral is used in Equation 2 to compute

Figure A.1. Localization error against line threshold parameter λ.

the distance D(x, l) from a point x to a line segment l on
a sphere. Here, D(x, l) is computed differently depending
on whether x lies on Q(s, e). The 2D and 3D line distance
functions (Equation 1, 3) are further built upon this defini-
tion of D(x, l).

Hyperparameter Setup Here we report the hyperparam-
eter setup of LDL. As explained in Section 3, from Nt×Nr

poses we select K candidate poses by comparing the dis-
tance functions with the robust lost function in Equation 5.
Recall that we use the candidate rotation estimation step in
Section 3.2 to choose Nr rotations. For the Nt translations,
we follow the design choice of prior works [5, 6, 12, 13]
and employ uniform grid partitions for Stanford2D-3D-
S [3] and centroids of octrees as in Rodenberg et al. [18]
for OmniScenes [12]. We set K=20, Nt=800 for Om-
niScenes [12] and K=20, Nt=1700 for Stanford 2D-3D-
S [3]. We use an increased number of translations for Stan-
ford 2D-3D-S to cope with large scenes such as auditori-
ums and hallways. Nevertheless, note that LDL can quickly
search promising candidate poses: even in Stanford 2D-3D-
S candidate pose search finishes within 0.02 seconds.

Potential for Privacy Preservation As explained in Sec-
tion 4.2, while the primary goal of LDL is to offer fast and
robust localization, our approach can also be extended to of-
fer low cost protection against various privacy breaches in
client-server localization. To cope with edge devices hav-
ing limited computing power, modern location-based ser-
vices employ a client-server localization setup [4, 8] where



Figure A.2. Given a line segment l (red), the distance (green) from
point x to the l is defined depending on whether x lies on the
spherical quadrilateral (blue) Q(s, e).

Figure A.3. Client-server localization setup using LDL. (a) The
edge device user captures the raw 2D data and shares the lines
and local features near lines with the service provider. The ser-
vice provider provides the 6DoF pose using the shared informa-
tion along with the 3D map. (b) While the service provider can
attempt feature inversion attacks by training neural networks that
learn image reconstructions from local feature inputs, this cannot
fully recover the sensitive visual details for LDL as only a fraction
of information is shared.

the visual data of the edge device is shared with the service
provider [8, 17]. Based on the shared information, the ser-
vice provider performs the actual localization pipeline and
returns the estimated 6DoF pose to the edge device user.

We adapt LDL to the client-server localization scenario
while offering privacy protection by having the edge device
user to only share lines and local features near lines during
localization. Specifically, as shown in Figure A.3, we mod-
ify the pose refinement phase of LDL to operate using local
features near lines, instead of all the visible local features
used for the original refinement explained in Section 3.4.
Here we only consider line segments whose lengths are over

t-error (m) R-error (◦) Accuracy
Area LDL LDLLS LDL LDLLS LDL LDLLS

Area 1 0.02 0.02 0.54 0.60 0.86 0.75
Area 2 0.02 0.05 0.66 0.79 0.77 0.57
Area 3 0.02 0.03 0.54 0.73 0.89 0.69
Area 4 0.02 0.02 0.48 0.57 0.88 0.72
Area 5 0.02 0.03 0.54 0.61 0.81 0.59
Area 6 0.02 0.02 0.50 0.58 0.83 0.66

Total 0.02 0.03 0.53 0.64 0.83 0.66

Table B.1. Ablation study of uniformly sampling query points on
the unit sphere. LDL is compared against a variant using query
points sampled along 2D line segment locations (LDLLS) in the
Stanford 2D-3D-S dataset [3].

a designated threshold as explained in Section 3.1 and direc-
tions are parallel to one of the 2D principal directions. Such
a modification results in privacy protection against feature
inversion attacks [8, 16, 17], which take local feature vec-
tors as input and outputs an image reconstruction. Note that
LDL naturally offers privacy protection during pose selec-
tion as it only uses line segments for this phase and thus
does not necessitate the clients to share their entire view
with the service provider. We further demonstrate the po-
tential of LDL for privacy protection through experiments
shown in Section B.5.

B. Additional Experimental Results
B.1. Additional Ablation Study

Choice of Query Point Locations We report the impact
of choosing uniformly sampled query points for evaluat-
ing distance functions. Recall that we rank Nt ×Nr poses
with the robust loss function in Equation 5, where the query
points Q are uniformly sampled from a unit sphere. We
compare LDL against a variant that uses query points sam-
pled along the 2D line segment locations. Namely, this vari-
ant only considers regions with line segments, in contrast to
LDL that equally considers regions lacking lines.

We make quantitative evaluations between LDL and the
variant using the Stanford 2D-3D-S [3] dataset. For fair
comparison, we use identical hyperparameters as the orig-
inal implementation of LDL. As shown in Table B.1, uni-
form sampling employed in LDL leads to large amounts of
performance improvement. By fairly using all regions on
the sphere, LDL effectively utilizes the spatial context from
the line distance functions and performs effective localiza-
tion.

Choice of Loss Function We validate the robust loss
function in Equation 5 by comparing LDL against variants
using other loss functions: L1, L2, Huber, and Median loss.
Here we report results from the Wedding Hall scene in Om-
niScenes, as this scene contains drastic scene changes with



Method t-error (m) R-error (◦) Acc.

w/ L1 Loss 0.08 1.38 0.55
w/ L2 Loss 0.17 1.48 0.34
w/ Huber Loss 0.11 1.39 0.50
w/ Median Loss 0.08 1.22 0.55

Ours 0.07 1.22 0.68

Table B.2. Ablation study on the choice of loss functions evaluated
in OmniScenes [12].

Figure B.4. 3D Lines from 3D Scanning (Left) and SfM (Right).

Method t-error (m) R-error (◦) Acc.

SfM 0.03 0.80 0.85
3D Scan 0.03 0.71 0.98

Table B.3. Evaluation results of LDL on noisier line maps obtained
using structure from motion and Line3D++ [11].

Figure B.5. Top-down view of offices in Stanford 2D-3D-S [3].

large amounts of outliers. As shown in Table B.2, the in-
lier counting proposed in Equation 5 attenuates outliers in
the Extreme split and exhibits optimal performance, demon-
strating the effectiveness of the robust loss function.

B.2. Evaluation in Noisier Maps

In the main paper, we extract 3D lines from point clouds
obtained using Matterport 3D scanners [1]. Here we run
LDL on noisier line maps created using structure-from-
motion (SfM) and Line3D++ [11]. As shown in Figure B.4,
the maps are more noisier than those from 3D scans. Ta-
ble B.3 shows the localization results from Room 3, 5 in
Omniscenes under different types of line maps (note the
new pipeline did not produce reliable maps in other scenes).
Even though LDL was run with the exact same hyperparam-
eters as in the main paper, it shows only a small amount of
performance drop, which indicates that it can robustly han-
dle noisier SfM-based line maps which are generated with-
out 3D scanners.

B.3. Additional Evaluation in Large-Scale Maps

In the main paper we demonstrated that LDL can per-
form competitively against the structure-based method in

Method t-error (m) R-error (◦) Acc.

LDL 0.02 0.54 0.90
Structure-Based 0.03 0.58 0.89

Table B.4. Evaluation on Large Scale Scenes

Figure B.6. Privacy-utility curve drawn from various values of
line-based filtering thresholds in the Stanford 2D-3D-S dataset.
While the reconstruction quality of feature inversion attacks
largely degrade as we filter out more feature points, the localiza-
tion accuracy remains relatively constant.

large scenes by testing multiple room localization in Om-
niScenes [23]. To further show the scalability of LDL, we
evaluate on 20 office rooms from Stanford 2D-3D-S [3], and
localize each image against the jointly composed 3D map.
The 20 office rooms contain similar structures, as shown in
Figure B.5. Even in such conditions, LDL shows similar
performance against the structure-based method as shown
in Table B.4. While scalability has not been the main goal
of this paper, LDL shows the potential to be deployed in
large-scale localization settings containing visual ambigui-
ties.

B.4. Full Localization Evaluation Results at Various
Accuracy Thresholds

We share the full localization results for the Om-
niScenes [12] and Stanford 2D-3D-S [3] datasets in Ta-
ble B.5, B.6. Here we additionally show the localiza-
tion accuracy at various accuracy thresholds. Our method
can perform competitively against all the tested baselines
across various thresholds, while performing light-weight
pose search with line distance functions.

B.5. Privacy Preservation Results

We share the detailed privacy evaluation results on the
Stanford 2D-3D-S [21] dataset. Table B.7 shows the local-
ization accuracy along with the feature inversion attack re-
sults. The image error metrics (20 - PSNR, 1-SSIM, MAE)
of the feature inversion attacks measured against the orig-
inal panorama consistently increase for all tested scenar-
ios, indicating that our line-based feature filtering can suc-
cessfully hide visual details. This notion is further veri-
fied through the additional qualitative samples in Figure B.7
where the sensitive visual data such as tabletop clutter are
removed after filtering. Nevertheless, note that the filter-
ing process only incurs a small drop in localization per-
formance. We finally evaluate how LDL balances privacy
(feature inversion protection) and utility (localization accu-
racy) while using line-based feature filtering. In Figure B.6



Accuracy (0.05 m, 5◦) PC CPO SB LT CD LDL

Robot 0.66 0.88 0.86 0.85 0.27 0.92
Hand 0.77 0.77 0.73 0.72 0.22 0.82
Change Robot 0.39 0.58 0.72 0.72 0.21 0.78
Change Hand 0.45 0.58 0.68 0.70 0.22 0.72
Extreme 0.38 0.57 0.63 0.62 0.20 0.71

(a) Accuracy at translation and rotation threshold 0.05 m, 5◦

Accuracy (0.05 m, 10◦) PC CPO SB LT CD LDL

Robot 0.66 0.88 0.86 0.85 0.27 0.92
Hand 0.77 0.77 0.73 0.72 0.22 0.82
Change Robot 0.39 0.58 0.72 0.72 0.21 0.78
Change Hand 0.45 0.58 0.68 0.70 0.22 0.72
Extreme 0.38 0.57 0.63 0.62 0.20 0.71

(b) Accuracy at translation and rotation threshold 0.05 m, 10◦

Accuracy (0.1 m, 5◦) PC CPO SB LT CD LDL

Robot 0.69 0.89 0.99 0.99 0.31 0.98
Hand 0.81 0.80 0.95 0.95 0.29 0.97
Change Robot 0.41 0.59 0.93 0.94 0.30 0.95
Change Hand 0.47 0.60 0.92 0.90 0.30 0.92
Extreme 0.41 0.59 0.89 0.88 0.29 0.92

(c) Accuracy at translation and rotation threshold 0.1 m, 5◦

Accuracy (0.1 m, 10◦) PC CPO SB LT CD LDL

Robot 0.69 0.89 0.99 0.99 0.32 0.98
Hand 0.81 0.80 0.95 0.95 0.29 0.97
Change Robot 0.41 0.59 0.93 0.94 0.30 0.95
Change Hand 0.47 0.60 0.92 0.90 0.30 0.92
Extreme 0.41 0.59 0.89 0.88 0.29 0.92

(d) Accuracy at translation and rotation threshold 0.1 m, 10◦

Accuracy (0.2 m, 5◦) PC CPO SB LT CD LDL

Robot 0.70 0.89 1.00 1.00 0.34 0.99
Hand 0.81 0.81 0.98 0.98 0.32 0.99
Change Robot 0.41 0.59 0.98 0.99 0.33 0.98
Change Hand 0.48 0.60 0.97 0.97 0.34 0.97
Extreme 0.42 0.60 0.96 0.96 0.34 0.98

(e) Accuracy at translation and rotation threshold 0.2 m, 5◦

Accuracy (0.2 m, 10◦) PC CPO SB LT CD LDL

Robot 0.70 0.89 1.00 1.00 0.34 0.99
Hand 0.81 0.81 0.98 0.98 0.33 0.99
Change Robot 0.41 0.59 0.98 0.99 0.33 0.98
Change Hand 0.49 0.60 0.97 0.97 0.34 0.97
Extreme 0.42 0.60 0.96 0.96 0.34 0.98

(f) Accuracy at translation and rotation threshold 0.2 m, 10◦

Table B.5. Localization accuracy at various thresholds in the Om-
niScenes [12] dataset.

we plot the image error metrics of feature inversion attacks
against the original image along with the localization ac-
curacy using various line-based filtering threshold values.
While the discrepancy values increase largely, the localiza-
tion accuracy remains relatively constant. Thus the modi-
fied version of LDL can balance between privacy protection
and accurate localization, suggesting its future potential as
a robust privacy-preserving localization algorithm.

Nevertheless, the current modification cannot fully hide
keypoints from large structures such as walls and ceilings.
While these regions typically do not contain sensitive vi-
sual information, some users may want their entire views to

Accuracy (0.05 m, 5◦) PC CPO SB LT CD LDL

Area 1 0.66 0.89 0.83 0.83 0.46 0.83
Area 2 0.42 0.81 0.63 0.63 0.30 0.69
Area 3 0.53 0.76 0.81 0.82 0.34 0.86
Area 4 0.48 0.83 0.87 0.88 0.43 0.85
Area 5 0.44 0.73 0.68 0.69 0.34 0.74
Area 6 0.68 0.90 0.80 0.82 0.45 0.81

(a) Accuracy at translation and rotation threshold 0.05 m, 5◦

Accuracy (0.05 m, 10◦) PC CPO SB LT CD LDL

Area 1 0.66 0.90 0.83 0.83 0.46 0.83
Area 2 0.42 0.81 0.63 0.63 0.30 0.69
Area 3 0.53 0.76 0.81 0.82 0.34 0.86
Area 4 0.48 0.83 0.87 0.88 0.43 0.85
Area 5 0.44 0.73 0.68 0.69 0.34 0.74
Area 6 0.68 0.90 0.80 0.82 0.45 0.81

(b) Accuracy at translation and rotation threshold 0.05 m, 10◦

Accuracy (0.1 m, 5◦) PC CPO SB LT CD LDL

Area 1 0.66 0.90 0.89 0.90 0.50 0.86
Area 2 0.45 0.81 0.76 0.74 0.35 0.77
Area 3 0.57 0.78 0.92 0.88 0.36 0.89
Area 4 0.49 0.83 0.91 0.91 0.46 0.88
Area 5 0.44 0.74 0.80 0.79 0.36 0.81
Area 6 0.69 0.90 0.88 0.87 0.47 0.83

(c) Accuracy at translation and rotation threshold 0.1 m, 5◦

Accuracy (0.1 m, 10◦) PC CPO SB LT CD LDL

Area 1 0.66 0.90 0.89 0.90 0.50 0.86
Area 2 0.45 0.81 0.76 0.74 0.35 0.77
Area 3 0.57 0.78 0.92 0.88 0.36 0.89
Area 4 0.49 0.83 0.91 0.91 0.46 0.88
Area 5 0.44 0.74 0.80 0.79 0.36 0.81
Area 6 0.69 0.90 0.88 0.87 0.47 0.83

(d) Accuracy at translation and rotation threshold 0.1 m, 10◦

Accuracy (0.2 m, 5◦) PC CPO SB LT CD LDL

Area 1 0.67 0.90 0.89 0.90 0.50 0.86
Area 2 0.47 0.81 0.80 0.81 0.37 0.78
Area 3 0.59 0.81 0.96 0.93 0.41 0.95
Area 4 0.50 0.83 0.94 0.93 0.47 0.89
Area 5 0.47 0.78 0.84 0.84 0.39 0.84
Area 6 0.69 0.90 0.88 0.88 0.48 0.84

(e) Accuracy at translation and rotation threshold 0.2 m, 5◦

Accuracy (0.2 m, 10◦) PC CPO SB LT CD LDL

Area 1 0.67 0.90 0.89 0.90 0.50 0.86
Area 2 0.47 0.81 0.80 0.81 0.37 0.78
Area 3 0.59 0.81 0.96 0.93 0.41 0.95
Area 4 0.50 0.83 0.94 0.93 0.47 0.89
Area 5 0.47 0.78 0.84 0.84 0.39 0.84
Area 6 0.69 0.90 0.88 0.88 0.48 0.84

(f) Accuracy at translation and rotation threshold 0.2 m, 10◦

Table B.6. Localization accuracy at various thresholds in the Stan-
ford 2D-3D-S [12] dataset.

be hidden from service providers. Developing a more se-
cure line-based localization algorithm that could alleviate a
wider range of concerns is left as future work.

C. Baseline Details

In this section, we describe the details for implementing
the baselines compared against LDL. We implement PIC-



Figure B.7. Deletion of objects in feature inversion attacks after line-based filtering.

Method t-error (m) R-error (◦) Acc.

No Filtering 0.02 0.53 0.83
Filtering 0.03 0.64 0.77

(a) Localization Performance Evaluation in Stanford 2D-3D-S [3]

Method 20-PSNR 1-SSIM MAE

No Filtering 1.1717 0.5505 0.1598
Filtering 1.7577 0.6027 0.1773

(b) Reconstruction Quality of Feature Inversion Attacks

Table B.7. Privacy-preservation evaluation of modified LDL us-
ing line-based feature filtering evaluated in Stanford 2D-3D-S
dataset [3]. The simple filtering incurs only a small drop in local-
ization accuracy while largely increasing the image error metrics.

COLO [12] and CPO [13] from the publicly available code-
base. Below we retain our description on the Structure-
based, Chamfer-based, and Line Transformer-based ap-
proaches.

Structure-Based Approach As explained in Section 4,
structured-based approach first finds promising candidate
poses using robust image retrieval and then refines poses
using PnP-RANSAC from feature matches. For image re-
trieval we use NetVLAD [2], which is a widely used image
retrieval method that outputs a global feature vector for each
image. To deploy NetVLAD in our setup, we first render
Nt×Nr synthetic views from the point cloud. Here we use
Nt = 100 candidate translations and Nr = 216 candidate
rotations uniformly sampled from SO(3). Then, we extract
the global features for each synthetic view and the query
image, and choose the top K = 20 synthetic views whose
feature vectors are closest to the query image. As the final
step, we perform feature matching [19] from each selected
synthetic view against the query image, and choose the fi-
nal view with the most matches. To ensure fair comparison,
we undistort the selected view and the query panorama into
cubemaps and separately perform feature matching for each
pair of faces. The matches are then aggregated to perform
refinement via PnP-RANSAC [10].

Chamfer Distance-Based Approach Inspired from Mi-
cusik et al. [15], Chamfer distance-based approach first
selects poses that best align 3D lines against lines in the
query image, where the Chamfer distance is used to eval-
uate the potential matchings. The selected poses are then
refined with PnP-RANSAC, similar to the structure-based
approach. To elaborate, we find the top K = 20 poses from
an initial pool of Nt×Nr poses, where the poses are ranked
by measuring the Chamfer distance between the projected
line segments in 3D and those in the query image. We set
Nt and Nr identical to LDL and use the principal directions
for deducing a set of candidate rotations. As the final step,
we render views at the selected K poses and perform fea-
ture matching against the query image for refinement via
PnP-RANSAC.

Line Transformer-Based Approach Based on Yoon et
al. [22], Line Transformer-based approach finds candidate
poses attaining the most line matches with the query image,
and refines poses using PnP-RANSAC. For establishing line
matches, we first render Nt ×Nr synthetic views from the
point cloud where we set Nt = 100 and Nr = 216. Then,
the top K1 = 100 poses are selected whose NetVLAD [2]
features are closest to the query image. This intermediate
step is necessary as the line transformer features are com-
putationally expensive and thus could not be naively evalu-
ated for all Nt × Nr views. For each synthetic view from
the selected poses, we extract line Transformer embeddings
and establish matchings with the query image. Similar to
the structure-based baseline, we convert panoramas to cube-
maps during the line matching process. Finally, we select
the top K2 = 20 poses that have the most line matches, and
refine them via PnP-RANSAC.

D. Details on Experimental Setup

In this section, we provide additional details for experi-
ments presented in Section 4 and Section B.



Figure D.8. Visualization of the 3D line segments used for
LDL. While the line segment extraction algorithm from Xiaohu
et al. [20] can reliably extract the wireframe-like structure from
the original 3D scan, the line segments are still quite noisy. Note
that we have cropped the ceilings of the original point cloud for
better visualization.

Illumination Robustness Evaluation To evaluate the ro-
bustness of LDL against illumination shifts, we apply syn-
thetic color variations to images in Room 3 from Om-
niScenes [12]. We consider three synthetic color variations,
where qualitative examples are shown in Figure 4: average
intensity, gamma, and white balance change. For average
intensity change we lower each pixel intensity by 25%. For
gamma change, we set the image gamma to 0.2. For white
balance change, we apply the following transformation ma-

trix to the raw RGB color values:

0.7 0 0
0 0.9 0
0 0 0.8

.

Candidate Pose Search Evaluation We compare LDL
against NetVLAD [2] for candidate pose search using the
Extreme split from OmniScenes. The recall curves in Fig-
ure 5 are obtained by measuring the localization perfor-
mance of both methods prior to pose refinement. As men-
tioned in Section 4.2, we use the identical set of translations
with Nt = 50 for both methods and associate a large num-
ber of candidate rotations Nr = 216 for NetVLAD to en-
sure fair comparison. Such measures are taken for rotations
since LDL estimates rotations using combinatorial match-
ings of principal directions, which makes the number of
candidate rotations to vary for each query image. We empir-
cally find that less than 30 candidate rotations remain after
discarding infeasible rotations, and thus setting Nr = 216
for NetVLAD would provide enough evidence to achieve

competitive performance against LDL.

Feature Inversion Network for Privacy Evaluation To
evaluate the privacy protection of LDL against feature inver-
sion attacks, we train a fully-convolutional neural network
FΘ(·) that takes a sparse feature map D ∈ RH×W×C as
input and produces image reconstructions. The feature map
stores local feature descriptors f ∈ RC at keypoint loca-
tions (ikpt, jkpt), namely D(ikpt, jkpt) = f , and zero values
for other regions. For the inversion network, we use a sim-
ilar U-Net architecture as in Ng et al. [16] where the only
difference is in the input channel dimension that we set as
256 instead of 128 to match the SuperPoint [9] descriptor
dimensions. Then for training, we use the entire Matter-
port3D [7] dataset where we use the first 90% of the 9581
panorama images for training and the rest for validation. We
follow the training procedure of Ng et al. [16] and use the
perceptual loss and mean absolute error (MAE) loss, where
we employ Adam [14] with a learning rate of 1e−4 for op-
timization. In our experiments, we use the trained network
to reconstruct panoramas from the local feature descriptors,
where we shared the reconstruction results along with the
image error metrics in Section 4 and Section B. To elab-
orate, during evaluation we first extract local features for
each query image in the Stanford 2D-3D-S dataset [3] and
run feature inversion, where the results are then compared
against the original panorama image.

3D Line Maps for Localization In Figure D.8, we show
visualizations of 3D lines used as input to LDL. Despite the
reliabilty of the 3D line extraction algorithm of Xiaohu et
al. [20], the lines are still quite noisy. To cope with the noisy
detections, LDL employs a length-based filtering scheme to
only keep long, salient lines and resorts to matching the dis-
tribution of lines using line distance functions instead of try-
ing to establish direct one-to-one matchings as in previous
works [15, 22].
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