
Learning Point Cloud Completion without Complete Point Clouds:
A Pose-Aware Approach

–Supplementary materials–

Jihun Kim, Hyeokjun Kwon, Yunseo Yang, and Kuk-Jin Yoon
Korea Advanced Institute of Science and Technology
{jihun1998,0327june,acorn,kjyoon}@kaist.ac.kr

1. Implementation Details

1.1. Architecture Details

(2048 × 3)
Input Point Cloud

Gridding

Conv

Conv

Conv

Conv

(32 × 323)

(64 × 163)

(128 × 83)

(1 × 643)

(256 × 43)

Volumetric Feature

(256 × 42)

Projected Feature

(256 × 43)

Output Point Cloud
(2048 ×3)

(a) (b)

FC Layer

DeConv

DeConv

DeConv

DeConv

(128 × 83)

(64 × 163)

(32 × 323)

(1 × 643)

GriddingRev

(3 × 2048)

Feature Sample

(2048 × 1792)

FC Layer

Projection

Figure 1: Detailed architectures of encoder and decoder. (a)
In the encoder, volumetric feature is obtained by passing
“Gridding”, 4 “Conv” blocks. Then, the projected feature
is obtained from the projection method. (b) In the decoder,
the final output incomplete point cloud is generated by de-
coding the projected feature with “FC Layers”, 4 “DeConv”
blocks, “GriddingRev”, and “Feature Sample” process.

The details of the encoder architecture are shown in
Fig. 1 (a). We follow some modules from GRNet [4] to
apply a gridding structure and volumetric feature. We use
the gridding module proposed in GRNet to create a gridded
voxel representation of the input point cloud. The dimen-
sion of the gridded voxel representation is 643. The “Conv”
block in Fig. 1 (a) includes a 3D convolutional layer with
a kernel size of 4 and padding of 2, a batch normalization,
a leaky ReLU activation, and a max pooling layer with a
kernel size of 2. After the gridded voxel is entered, the vol-
umetric feature with dimension of 256×43 is extracted from
4 Conv blocks. Finally, a projected feature with dimension
of 256 × 42 is obtained from the volumetric feature using
the proposed projection method conditioned by a given pose
(ϕ, θ).

Next, the details of the decoder architecture are shown in
Fig. 1 (b). The projected feature is entered into “FC Layer”
first. The “DeConv” block in Fig. 1 (b) includes a 3D trans-
posed convolutional layer with a kernel size of 4 and stride
of 2, a batch normalization, and a ReLU activation. After
4 DeConv blocks, intermediate gridding is generated with
643 size. We also use the “GriddingRev” module and “Fea-
ture Sample” module proposed in GRNet. Each feature ob-
tained from 4 DeConv blocks is used in the Feature Sample
module. After passing through the decoder, the output point
cloud with dimension of 2048×3 is generated from the pro-
jected feature.

1.2. Details on Projection Method

In the main paper, we omit some details about the pro-
posed projection method. One of these details is the pro-
cess of determining the base region according to the pose,
as shown in Fig. 2 (a). We first select a center point by
computing ϕcenter and θcenter as follow:

ϕcenter = round(ϕ/30◦)× ϕ (1)
θcenter = round(θ/30◦)× θ. (2)



Projected feature

Base feature

Center point

(a) (b)

Figure 2: Illustration of the detailed process involved in the
projection method. (a) The center point is selected, and the
5 × 5 base region is determined around it. (b) Bilinear in-
terpolation is applied in the projected feature by calculating
the weights for each neighboring base feature according to
the pose.

Here, the round function rounds the value in parentheses to
the nearest integer. Since the interval between each grid is
regarded as 30◦ in the volumetric feature, the center point
can be selected based on ϕcenter and θcenter. Finally, us-
ing the center point as the reference, the base region can be
determined as shown in Fig. 2 (a).

The next part is the process of obtaining the projected
feature from the base feature, which is shown in Fig. 2 (b).
To apply bilinear interpolation, we calculate ϕremainder and
θremainder as follow:

ϕremainder = ϕ%30◦ (3)
θremainder = θ%30◦. (4)

Here, % function returns the remainder of a division opera-
tion. Using these values, weights shown in Fig. 2 (b) can be
calculated with the following equations:

rϕ = ϕremainder/30
◦, rθ = θremainder/30

◦ (5)
wi,j = (1− rϕ)(1− rθ) (6)
wi+1,j = rϕ(1− rθ) (7)
wi,j+1 = (1− rϕ)rθ (8)
wi+1,j+1 = rϕrθ. (9)

Now, projected features can be calculated from the weights
and the neighboring base features.

1.3. Details on Dataset Generation

The dataset generation process involves utilizing the
technique described in [2] to eliminate unobserved points
from a given point cloud with a specific pose. Since we
have complete point clouds from ShapeNet [1], we generate
incomplete point clouds that would be used for input. This
ensures that the generated point clouds are realistic and rep-
resentative of real-world scenarios. To create incomplete
point clouds for training and testing, poses are randomly

assigned to each complete point cloud. The poses are ex-
pressed in spherical coordinates, with a radius of 1.5. The
values of θ and ϕ are sampled from uniform distributions in
the ranges of [0, 180◦] and [0, 360◦], respectively.

Figure 4 depicts the outcomes of the dataset genera-
tion process, including an example of an incomplete point
cloud generated for each category. The second and fourth
columns show incomplete point clouds that we generated
with a random pose. The first two columns exhibit the ob-
ject’s point cloud from a designated viewpoint with θ = 45◦

and ϕ = 45◦. The self-occluded parts of the generated in-
complete point cloud’s missing portions can be seen in the
second column when compared to the complete point cloud
in the first column. The third and fourth columns exhibit the
outcomes viewed from the pose employed in creating the in-
complete point cloud. If the incomplete point cloud is well-
generated for the intended pose, it should appear identical to
the complete point cloud from that viewpoint. As expected,
the shapes of point clouds in the third and fourth columns
are similar, indicating that only unobservable points were
removed based on the corresponding poses. Consequently,
the incomplete point clouds are effectively generated and
representative of real-world scenarios.

2. More Experiments
2.1. More Qualitative Comparisons

Figure 5 presents additional completion results, which
include examples from previous studies [3, 5], to further
evaluate the effectiveness of our proposed method. For
each category, two different examples are shown consec-
utively. Our results demonstrate that the proposed method
achieves comparable and sometimes even better completion
performance across all categories when compared to previ-
ous studies with unpaired settings. This highlights the ef-
fectiveness of our proposed method for point cloud com-
pletion.

2.2. Results with Different Voxel Resolution

We verify the impact of voxel resolution on the perfor-
mance. Table 1 shows the result of performance, FLOPs,
and memory usage for resolutions of 3 × 3 × 3, 4 × 4 × 4,
and 5 × 5 × 5. As the voxel resolution increases, CD de-
creases, and F1-score increases. However, we can see that
using a 5 × 5 × 5 voxel resolution leads to a significant in-
crease in both FLOPs and memory requirements. Taking
this trade-off into account, we set voxel resolution as 4 × 4
× 4 in our paper.

2.3. Effect of Internal Voxel Features

While we acknowledge that our rendering process uti-
lizes the surface voxels only, we would like to clarify that
the feature extraction is conducted using the internal voxels



Table 1: Impact of voxel resolution on performance. CD is
Chamfer Distance scaled with ×104. Best results are indi-
cated as bold

Resolution CD ↓ F1-score ↑ FLOPs (G) ↓ Memory (G) ↓
3× 3× 3 10.36 86.83 10.31 28.24
4× 4× 4 9.63 88.01 12.94 46.68
5× 5× 5 9.25 88.28 17.16 81.73

together. As shown in Fig. 1, the encoder processes the in-
put with 3D convolutions, and the internal voxels are used
for feature extraction. To prove this, we train our method
with surface voxels only, omitting the internal voxels. The
exclusion of internal voxels results in an increase of 0.6 CD
and a decrease of 0.93 F1-score, demonstrating decreased
performance.

2.4. Results with Other Types of Occlusion

We mainly focus on the incomplete point clouds caused
by self-occlusion since it is an inherent limitation when ac-
quiring point cloud data using scanners like LiDAR. How-
ever, we acknowledge that other types of occlusions, such
as when other objects occlude the target object, can also
occur. To address this issue, we conduct additional exper-
iments with simulated occlusion. Specifically, we remove
certain portions of the point cloud as if they were occluded
by other objects. The substantial completion results de-
picted in Fig. 3 demonstrate the robustness of our method
to other types of occlusion. We believe that this generaliza-
tion capability is mainly due to the re-training phase, which
enables the model to learn the concept of “completion” on
multiple categories.

Cabinet Car Sofa

A B A B A B

Figure 3: A: Input with simulated occlusion, B: Our result.

References
[1] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat

Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Manolis
Savva, Shuran Song, Hao Su, et al. Shapenet: An information-
rich 3d model repository. arXiv preprint arXiv:1512.03012,
2015. 2

[2] Sagi Katz, Ayellet Tal, and Ronen Basri. Direct visibility of
point sets. In ACM SIGGRAPH 2007 papers, pages 24–es.
2007. 2

[3] Xin Wen, Zhizhong Han, Yan-Pei Cao, Pengfei Wan, Wen
Zheng, and Yu-Shen Liu. Cycle4completion: Unpaired point
cloud completion using cycle transformation with missing re-
gion coding. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 13080–13089,
2021. 2, 5

[4] Haozhe Xie, Hongxun Yao, Shangchen Zhou, Jiageng Mao,
Shengping Zhang, and Wenxiu Sun. Grnet: Gridding residual

network for dense point cloud completion. In European Con-
ference on Computer Vision, pages 365–381. Springer, 2020.
1

[5] Junzhe Zhang, Xinyi Chen, Zhongang Cai, Liang Pan, Haiyu
Zhao, Shuai Yi, Chai Kiat Yeo, Bo Dai, and Chen Change Loy.
Unsupervised 3d shape completion through gan inversion. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 1768–1777, 2021. 2, 5



IncompleteComplete

A
ir

p
la

n
e

C
ar

C
h

ai
r

S
o

fa
V

es
se

l

IncompleteComplete

Designated viewpoint Employed viewpoint
T

ab
le

C
ab

in
et

Figure 4: Visualization of generated incomplete point clouds. Point clouds in the first and second columns are all viewed
from the same fixed pose. Point clouds in the third and fourth columns are viewed from the pose, which is used for generating
incomplete point clouds. Incomplete point clouds in the second and fourth columns are generated by eliminating unobserved
points.



Input Cycle. [3] ShapeInv. [5] Ours Ours (+RT) GT

A
ir

p
la

n
e

C
ar

C
h
ai

r
S

o
fa

V
es

se
l

T
ab

le
C

ab
in

et

Figure 5: Visualization of completion results for all categories. From left to right: incomplete inputs, results of Cy-
cle4completion [3], ShapeInversion [5], ours without RT, ours with RT, and GT.


