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In this supplementary material, we provide additional in-
formation for the proposed method and supplementary ex-
periments. Specifically, we present implementation details,
additional ablation studies, experiments on KITTI dataset,
results on 3D object tracking, and additional qualitative re-
sults.

A. Implementation Details
A.1. Baselines

We use BEVDepth [10] and BEVstereo [9] as two base-
lines of our work. We employ the official codes.1

BEVDepth To enhance depth estimation from images,
BEVDepth introduces explicit depth supervision using Li-
DAR point clouds. A camera-awareness depth estimation
module and a depth refinement module are proposed to
facilitate depth prediction. Furthermore, BEVDepth lever-
ages multi-frame by concatenating all temporal features af-
ter warping.
BEVStereo BEVStereo extends BEVDepth pipeline to
leverage multiple frames effectively. BEVStereo adopts a
dynamic temporal stereo which can save memory cost by
reducing cost volume. Furthermore, a parameter evolution
algorithm is proposed for noisy features. BEVStereo in-
spired by MaGNet [1].

A.2. Training settings

Table A1 presents the training recipes and hyperparame-
ters used in P2D.

A.3. Prediction query-based cross attention

We provide detailed information on the prediction query-
based cross attention (PQCA). Given the object queries
Q ∈ RK×Cq that are the output of the prediction head in
P2D, PQCA aggregates temporal BEV features F 1:T

BEV us-
ing a deformable attention [16].

1https://github.com/Megvii-BaseDetection/
BEVDepth

backbone ResNet50 ResNet101

image size 256×704 512×1408

batch size 16

epoch 24

optimizer AdamW

base lr 2e-4

backbone lr 2e-4

lr scheduler 0.1 at [19, 23]

weight decay 0.01

Table A1. Training settings of P2D with different backbones.

PQCA(Qq, pq, {F 1:T
BEV })

=

M∑
m=1

Wm

[
T∑

t=1

N∑
n=1

Amtqn ·W
′

mF t
BEV (pq +∆pmtqn)

]
,

(A1)

where Qq denotes the prediction-guided object query at
pq = (i, j). m, t and n index the attention head, timestep,
and sampling point, respectively. Wm ∈ RC×Cv and
W

′

m ∈ RCv×C are learnable weights, Amtqn denotes
the attention weight of nth sampling point in the feature
F t
BEV and the mth attention head. Amtqn is normalized as∑T
t=1

∑N
n=1 Amtpn = 1.

We set M = 8, T = 3 with 1-second interval, and N =
9. We stack 6 layers of PQCA to generate a spatio-temporal
feature.

B. Additional Quantitative Results
B.1. Per-class results

Table B2 presents the per-class evaluation results ob-
tained by comparing P2D with each baseline under the same
experimental settings for a fair comparison. We utilized a

https://github.com/Megvii-BaseDetection/BEVDepth
https://github.com/Megvii-BaseDetection/BEVDepth


Methods Car Truck Bus Trailer C.V. Ped. Motor. Bicyle T.C. Barrier mAP

BEVDepth 50.4 27.4 38.2 14.6 8.2 29.2 34.8 34.2 46.7 50.3 33.4

P2D (BEVDepth) 52.3 30.6 36.8 18.3 8.9 32.5 36.9 34.0 52.5 56.6 36.0
BEVStereo 50.9 28.7 38.8 16.7 8.7 35.1 36.8 33.8 49.2 50.4 34.9

P2D (Stereo) 54.1 31.8 39.7 16.5 10.6 38.0 40.3 36.8 52.2 54.0 37.4

Table B2. Per-class AP results on nuScenes val set. ‘C.V’, ‘Ped.’, ‘Motor.’, ‘T.C.’ stands for construction vehicle, pedestrian, motorcycle,
and traffic cone, respectively.

Methods mATE mASE mAOE mAVE mAAE

BEVDepth 0.662 0.282 0.663 0.135 0.260

+ P2D 0.649 0.276 0.574 0.147 0.251
BEVStereo 0.647 0.284 0.601 0.131 0.259

+ P2D 0.644 0.279 0.595 0.123 0.248

Table B3. Results on the static objects. Only objects with a velocity
lower than 1m/s are evaluated.

K mAP NDS mATE mASE mAOE mAVE mAAE FPS

1024 0.359 0.474 0.642 0.271 0.515 0.413 0.218 10.8
2048 0.360 0.474 0.643 0.271 0.512 0.412 0.217 10.8
4096 0.359 0.473 0.642 0.272 0.515 0.415 0.218 10.7

8192 0.358 0.472 0.640 0.273 0.517 0.423 0.219 10.4

Table B4. Ablation on the number of queries in the prediction-
guided cross attention.

ResNet50 backbone and an image size of 256×704. The re-
sults reveal that P2D consistently outperforms most classes.

B.2. Static objects

Table B3 demonstrates the evaluation results for static
objects with a velocity lower than 1 m/s. While P2D
with the BEVDepth baseline shows a marginal increase in
mAVE, the small absolute value (0.012 m/s) renders it in-
significant. In the case of BEVStereo, there is a marginal
improvement in all true positive errors. These outcomes
confirm that P2D’s primary performance enhancement is in
estimating moving objects, which hold greater significance
in the driving environment.

B.3. Number of queries

In the prediction-guided object query-based cross atten-
tion, we select object queries to effectively aggregate tem-
poral BEV features. To investigate the impact of the number
of queries on the model’s performance, we conduct an abla-
tion study and report the results in Table B4. The results in-
dicate that both detection performance and FPS decrease as
the number of queries increases. Although the performance
difference is marginal, We believe that choosing an appro-

Methods AMOTA ↑ AMOTP ↓ MOTA ↑ IDS ↓ Frag ↓ MT ↑

DEFT [2] 0.177 1.564 0.156 6901 3420 1951

Time3D [8] 0.214 1.360 0.173 N/A N/A N/A

QD3DT [7] 0.217 1.550 0.198 6856 3001 1893

TripletTrack [11] 0.268 1.504 0.245 1044 3978 2085

MUTR3D [14] 0.270 1.494 0.245 6018 2749 2221

PolarDETR [3] 0.273 1.185 0.238 2170 1924 2266

P2D 0.377 1.122 0.337 1212 858 2713

Table B5. 3D object tracking results on nuScenes test set. We at-
tached a greedy assignment algorithm on P2D for the tracking
task.

priate number of object queries can help the model to fo-
cus on the foreground area and prevent the generation of
false positives, thereby improving the overall detection per-
formance.

B.4. Tracking

The ability of P2D to accurately estimate the location
and velocity of moving objects makes P2D promising to
apply for the object tracking task. To evaluate the perfor-
mance of P2D for 3D object tracking, we conduct experi-
ments on the nuScenes tracking dataset. We trained P2D for
tracking using a ResNet101 backbone and an image size of
512×1408, and adopted a simple greedy assignment algo-
rithm similar to CenterTrack [15]. The results are reported
in Table B5. The results demonstrate that P2D outperforms
several other state-of-the-art models. Notably, we observed
significant improvements in both Frag (number of track
fragmentations) and MT (number of mostly tracked trajec-
tories), indicating that the prediction strategy employed in
P2D is also effective in object tracking.

C. Experiments on KITTI Dataset
To prove the effectiveness of the prediction scheme even

in a different dataset and model architecture, we conduct
experiments on KITTI dataset [4] with DD3D [12] baseline.

C.1. Experiments settings

DD3D [12] is a monocular 3D object detection model
that benefits from depth pre-training with another dataset



Methods TTA
Pedestrian Cyclist

AP3D APBEV AP3D APBEV

Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

DD3D 10.90 8.22 6.53 13.73 10.38 8.37 3.92 2.20 2.08 4.73 2.66 2.40

P2D 12.86 9.21 7.63 15.07 11.22 8.76 6.56 3.52 3.40 7.36 3.87 3.77
DD3D ✓ 11.19 8.80 7.04 13.17 10.45 8.46 4.40 2.56 2.48 5.27 2.95 2.82

P2D ✓ 13.60 10.08 8.17 16.18 12.01 9.87 7.67 3.90 3.82 10.62 5.26 5.42
Table B6. KITTI-3D val set evaluation on Pedestrian and Cyclist. TTA denotes Test Time Augmentation.

Methods TTA
Car

AP3D APBEV

Easy Moderate Hard Easy Moderate Hard

DD3D 20.06 16.08 14.04 27.93 22.53 19.93

P2D 22.60 16.74 14.38 31.59 24.39 20.95
DD3D ✓ 22.32 16.92 15.11 32.20 24.77 22.08

P2D ✓ 28.08 19.69 17.09 39.04 28.34 24.57

Table B7. KITTI-3D val set evaluation on Car. TTA denotes Test
Time Augmentation.

[6]. The architecture of DD3D is based on FCOS3D and
achieves state-of-the-art performance on KITTI 3D object
detection dataset [5]. We employ DD3D as our baseline and
add a prediction scheme to verify the effectiveness of the
prediction strategy on KITTI dataset.

C.2. Results on KITTI dataset

Different from P2D with BEVDepth, we employ the pre-
diction as an auxiliary task, and the results are reported in
Table B6 and Table B7. We extend our model from the offi-
cial code2 with the DLA34 [13] backbone, keeping all other
training settings remain the same as DD3D. The results
in Table B6 and Table B7 demonstrate that the prediction
scheme significantly improves detection performance in all
three classes. suggesting that the effectiveness of our pre-
diction scheme is not limited to a specific model or dataset
but is generally applicable.

D. Additional Qualitative Results
We visualize sample cases in Figure D1 and Figure D2

to compare the performance of P2D against the baseline
method. These figures depict the sequence of detection re-
sults obtained from both methods with ground truth bound-
ing boxes, covering 5 frames with 0.5 second intervals.

In the first scenario of Figure D1, there are moving ob-
jects ahead and behind the ego vehicle as indicated by

2https://https://github.com/TRI-ML/dd3d

the dotted blue boxes. During this sequence, the baseline
method detects the front vehicle in only two frames (t − 3
and t−2), and it fails to detect the vehicle in the rear. In con-
trast, P2D detects both vehicles in front and rear throughout
all timesteps. This case demonstrates the ability of P2D to
effectively detect moving objects.

In the second scenario depicted in Figure D2, vehicles
on the right side are visible at the first timestep (t − 4), but
they become occluded by a truck as the ego vehicle moves
forward. The baseline method starts to lose these occluded
objects from t − 2 and fails to detect all four occluded ve-
hicles at time t. On the other hand, P2D successfully keeps
track of the occluded objects and does not miss any of them
throughout all timesteps.

Detecting occluded objects using motion features is crit-
ical as pedestrians can suddenly appear from such blind
areas. Moreover, since these vehicles are not annotated as
ground truth due to the absence of Lidar points, these detec-
tion results are counted as false positives. Thus, we argue
that motion cues can enhance 3D object detection beyond
just improving performance metrics. The presented quali-
tative analysis highlights the importance of incorporating
motion cues in 3D object detection and demonstrates the
superior ability of P2D in detecting occluded objects.

https://https://github.com/TRI-ML/dd3d
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Baseline P2D

Figure D1. Visualization of a sequence containing moving objects. The blue dotted rectangles in the BEV view indicate the vehicles
moving in the same lane as the ego vehicle. Despite an error in localization, P2D (right) successfully detects these moving objects, while
the baseline (left) fails to fully detect them.
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Baseline P2D

Figure D2. Visualization of a sequence with occluded objects. The blue dotted rectangles in the BEV view indicate the objects which are
highly occluded in the image view. P2D (right) leverages temporal information to detect such an occluded object that appears in previous
frames, while the baseline (left) fails to detect it due to occlusion.
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