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Content
This supplementary material provides details of pre-

training experiments (Section 1), detailed settings of fine-
tuning (Section 2), and more diverse samples of t-SNE [36]
(Section 3).

1. Pre-trainings
1.1. Details of Pre-training

In Pix2Seq [4], sequence augmentation was applied to
add a noise token to the sequence. On the other hand, we
do not apply sequence augmentation to our model because
we could not empirically observe the performance improve-
ment with noise tokens. The learning rate is set to 1e-4
with a cosine decay scheduler [24] where a warm-up step is
100K steps. For the data augmentation, we adopt the widely
used augmentation methods for OCR as follows: random
crop following CRAFT [1], random rotation, random resize
options (e.g., bilinear, nearest neighbor, bicubic, and Lanc-
zos interpolation), and photometric distortion.

The detailed settings of the online text renderer are as
follows. The range of resolution is from 400 to 768, the
range of background RGB values is from 151 to 255, and
the Gaussian blur radius value is 0 to 1.8 with a probabil-
ity of 0.2. Figure 3 provides image samples generated in a
one-to-one correspondence to the ICDAR2015 [13] test set
using the renderer.

1.2. Instability of Text-read

In this section, we present experimental results about the
instability of text-read when the model is pre-trained with
both VDU and STU data. As significant performance dif-
ferences are observed in the early stages of training, we
conduct a precise experiment. Specifically, we pre-train the
model using IIT-CDIP and scene text datasets for 200K
steps with a batch size of 16. For fine-tuning OCR, we em-
ploy scene text datasets used in the main paper and fine-tune
the models for 50K training steps with 8 batch size that con-
sists of 1920× 1920 resolution images.

Figure 1 shows the convergence of two distinct reading

Figure 1. Graphs of training loss and validation score during text-
read pre-training. (a) shows instability of text-read using VDU and
STU together. (b) also shows instability of text-read using VDU
and STU together for 1M steps compared to OCR-read. Valida-
tion score is normalized edit distance. Upper triangle in loss graph
means NaN (not a number).

approaches: text-read and OCR-read. Specifically, Figure 1
(a) shows that the loss and validation score converge stably
when only VDU data is used as a training set. However,
the model fails to generate appropriate sequences during
validation and experiences NaN (not a number) loss when
both VDU and STU datasets are used for training. Figure 1
(b) depicts the text-read pre-training process for 1M steps,
which has failed across various seed values. On the other
hand, OCR-read displays more stable convergence patterns
despite its loss and validation score converging at a slightly
higher level due to sensitivity issues such as coordinate to-
ken output. The sole difference between OCR-read and text-
read lies in the presence or absence of coordinate predic-
tion. Also, the distinction between VDU and STU domains
is based on whether text is present in the natural scene back-
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Method KIE Document VQA OCR Scene Text VQA

CORD [31] DocVQA [27] IC13 [14] IC15 [13] TotalText [6] TextVQA [33] ST-VQA [2]

Text-read on both domains 80.7 45.7 66.7 20.3 43.4 42.1 52.2
Text-read on VDU 85.3 53.1 77.1 35.8 56.1 42.8 53.2

Table 1. The performance evaluation for text-read according to pre-training domains. We report the end-to-end recognition F-measure
scores on IC13, IC15, and TotalText evaluated with strong, strong, and full lexicons, respectively

ground. We posit that a domain gap exists between VDU
and STU, contributing to the instability of text-read.

To evaluate the performance of the pre-trained weights
on downstream tasks, we fine-tuned text-read on four down-
stream tasks using pre-trained weights for 200K steps ((a)
of Figure 1). Table 1 indicates that text-read pre-training on
both domains fails to transfer learning on downstream tasks.
The performance of text-read using both domains is rela-
tively lower than that of text-read using only the VDU do-
main. This result further supports that text-read is unstable
in both domains, deteriorating the achievement of a reliable
pre-training.

1.3. Details of Ablation Study

As presented in Table 4 of the main paper, we conduct
an ablation study with five models. All models are pre-
trained for 1M steps. Table 2 provides detailed performance
of benchmarks. Details are as follows:

• A: WOCR-read.

• B: We introduce augmentation for generating multi-
view images. The augmentation types are random ro-
tation, image resize, color jittering, converting into the
gray channel, and Gaussian blur. Geometric augmen-
tations such as random rotation and image resize are
applied with low intensity. The model is trained via
Eq. 1 and Eq. 2.

• C: The real and rendered data are the input data of the
model. The model is trained via Eq. 3, and the renderer
is the same as SCOB.

• D: WOCR-read with SCOB.

• E: The model is trained under the fully supervised
learning. Thus, the coordinate information of real data
is employed for pre-training.

We fine-tune 4 downstream tasks such as KIE, document
VQA, OCR, and scene text VQA. For the tasks of VQA, we
evaluate the validation set, because multiple submissions of
the test dataset on the leaderboard can be regarded as cheat-
ing. We fine-tuned models for 50K steps using 16 batch size
on VQAs for efficiency. For the OCR tasks, we employ in-
termediate fine-tuned models, which are evaluated on the
test dataset.

Figure 2. The results for VQA (average scores of DocVQA,
TextVQA, STVQA) and E2E OCR (average F1 scores of IC13,
IC15, TotalText) across batch sizes (16, 32, 64) and resolutions
(384, 768, 1536). A fixed resolution of 768 and batch size of 32
were used respectively. The experiment involved 200K steps of
OCR-read pre-training and 50K of fine-tuning.

1.4. Performance Trends with Batch Size and Res-
olution

We present the experimental results of the effect of batch
size and resolution changes on downstream task perfor-
mance under the OCR-read pre-training setting in Figure 2.
The results confirm an enhancement in performance as both
batch size and resolution increase. We identified a perfor-
mance gap between SCOB and the current SoTA. How-
ever, in this paper, we delve into the composite domain of
VDU and STU to compare the performance of pre-training
tasks, verifying the superiority of SCOB under identical
pre-training environments. Based on these results, we ex-
pect that there is latent potential within the model, likely to
be uncovered through the careful tuning of factors such as
scale, learning schedule, and resolution.

2. Fine-tunings
2.1. Details of Fine-tuning

In the fine-tuning stage, we use 1920×1920 image reso-
lution to recognize text well, and intermediate training fol-
lows it. Moreover, we empirically confirmed that auxiliary
loss [3] accelerates the convergence of the recognition per-
formance of OCR. Thus we apply the auxiliary loss to all
layers of the decoder in the fine-tuning.

Table 3 provides our detailed settings for fine-tuning. We
fine-tune all models using Adam optimizer with a cosine de-
cay scheduler where the warm-up step is set to 10% of train-
ing steps. We have not widely explored the hyperparame-
ters, such as the batch ratio of the dataset, gradient clipping
value, and learning rate. We believe more hyperparameter



Method KIE Document VQA OCR Scene Text VQA

CORD [31] DocVQA [27] IC13 [14] IC15 [13] TotalText [6] TextVQA [33] ST-VQA [2]

A. WOCR-read 88.2 55.1 94.3 74.2 75.5 55.4 59.2
B. A w/ SupCon 87.7 50.0 93.4 76.5 76.7 53.0 60.6
C. A w/ rendering 88.0 47.8 94.1 76.4 75.4 50.8 57.7
D. A w/ SCOB 88.5 55.5 95.0 77.6 76.5 56.2 62.6
E. D w/ full annotation 86.8 55.1 94.7 77.7 75.5 56.1 63.1

Table 2. Ablation study on the proposed components. For the evaluation of OCR, we report the end-to-end recognition F-measure scores
on IC13, IC15, and TotalText evaluated with strong, strong, and full lexicons, respectively.

Task Steps Batch Size LR GC DPL MSL Resolution Batch Ratio of Fine-tuning Dataset

Table Reconstruction* 400K 16 5e-5 1.0 6 3072 768 1.0 PubTabNet [39]

KIE 200K 16 3e-5 1.0 0 512 1920 1.0 CORD [31]

Document Classification 1M 16 2e-5 1.0 0 8 1920 1.0 RVL-CDIP [10]

Document VQA 100K 16 3e-5 0.25 0 512 1920
0.65 DocVQA [27], 0.07 TextVQA [33] , 0.07 ST-VQA [2],

0.07 OCRVQA [28], 0.07 VizWiz [9], 0.07 VQAv2 [7]

Infographics VQA 100K 16 3e-5 0.25 0 512 1920
0.58 InfoVQA [26], 0.07 DocVQA [27], 0.07 TextVQA [33],

0.07 ST-VQA [2], 0.07 OCRVQA [28], 0.07 VizWiz [9], 0.07 VQAv2 [7]

Layout Analysis 100K 16 2e-4 1.0 0 512 1536 1.0 PubLayNet [40]

Scene Text VQA 100K 16 3e-5 0.25 0 512 1920
0.2 DocVQA [27], 0.2 TextVQA [33], 0.2 ST-VQA [2],

0.2 OCRVQA [28], 0.1 VizWiz [9], 0.1 VQAv2 [7]

Scene Text OCR* 100K 16 5e-5 1.0 0 512 2560
0.3 HireText [23] , 0.3 TextOCR [34], 0.09 TotalText [6],
0.09 OpenImagesv6 [19], 0.01 IC13 [14], 0.01 IC15 [13]

Table 3. Detailed settings of downstream tasks. For the batch ratio, we represent the cell as ‘batch ratio of dataset dataset’. Abbr. LR:
learning rate, GC: gradient clipping, DPL: decoder prune layer, MSL: maximum sequence length of decoder. * denotes that not using
intermediate training.

exploration will result in better performance. For the input
image resolution, we determine the resolution considering
the original image size and comparisons of the input size.

Here, we supplement more details of specific down-
stream tasks. To help understand downstream tasks, we pro-
vide the examples of image and its ground truth sequence of
our model in Figures 4 and 5.

Table Reconstruction. In table reconstruction, the model
should decode table structures and contents in the cell.
Thus, the maximum sequence length of the decoder is set
to 3072, which makes pruning 6 Transformer layers in the
decoder to reserve batch size 16. In table reconstruction, the
input can be categorized as image and PDF.

Layout Analysis. PubLayNet [40] is a dataset annotated
with a bounding box format and 5 document layout cat-
egories: text, title, list, figure, and table. This includes
335,703 training images and 11,245 validation images. We
fine-tune the train set and evaluate the validation set, fol-
lowing LayoutLMv3 [12].

Scene Text OCR. To evaluate the performance of our
OCR model, we assess its ability to recognize text in
different benchmarks, including ICDAR2013 [14], IC-
DAR2015 [13], and TotalText [6]. However, since each
dataset has a distinct format for coordinate annotation,
we conduct short annotation fine-tuning specifically for

IC15 and TotalText to mitigate any discrepancies. Table 5
presents the performance of our model on IC13, IC15, and
TotalText with additional lexicon conditions. Note that the
OCR performance reported in Table 2 is obtained before
annotation fine-tuning.

2.2. Comparison with More Models

Our methodologies are compared with more recent ap-
proaches such as UDOP [35], PaLI [5], and GIT2 [37] as
presented in Table 4. UDOP and PaLI-17B exhibit superior
performance across various benchmark criteria. These re-
sults show the potential of leveraging OCR to enhance the
performance of generative models, albeit with concomitant
resource implications. Based on PaLI-3B and PaLI-17B re-
sults, increasing the model size can also be a significant fac-
tor in the performance. Furthermore, it is noteworthy that
PaLI employs a form of text-read task as a pre-training
method. In this context, we believe that the integration of
our SCOB approach holds the potential to further amplify
the performance of PaLI.

2.3. Comparison on Layout Analysis

Table 7 shows the performance of PubLayNet [40].
Our models demonstrate comparable performance to pre-
vious methods. Importantly, our models can handle multi-
ple downstream tasks using a single pipeline, namely the



Method #GPUs
Universal Text Understanding Downstream Tasks

Table
Reconstruction KIE

Document
Classification Document VQA

Layout
Analysis Scene Text OCR Scene Text VQA

PubTabNet [39] CORD [31] RVL-CDIP [10] DocVQA [27] InfoVQA [26] PubLayNet [40] IC13 [14] IC15 [13] TotalText [6] TextVQA [33] ST-VQA [2]

WOCR-read 8×V100 96.0 88.2 94.2 56.1 22.7 93.8 95.8 89.6 84.9 55.4 62.9
WOCR-read w/ SCOB 8×V100 95.9 (-0.1) 88.5 (+0.3) 94.6 (+0.4) 60.2 (+4.1) 28.5 (+5.8) 93.9 (+0.1) 96.6 (+0.8) 90.9 (+1.3) 86.0 (+1.1) 56.2 (+0.8) 62.6 (-0.3)

Wtext-read 8×V100 96.2 85.5 94.4 57.0 25.2 93.6 96.0 87.2 83.7 49.3 57.2

Wtext-read w/ SCOB 8×V100 96.0 (-0.2) 87.4 (+1.9) 94.3 (-0.1) 59.6 (+2.6) 27.5 (+2.3) 93.9 (+0.3) 96.0 (+0.0) 90.2 (+3.0) 85.3 (+1.6) 54.4 (+5.1) 61.2 (+4.0)

TableFormer [29] n/a 93.7 - - - - - - - - - -

Donutproto [16] 8×V100 - 85.4 94.5 47.1 10.2* - - - - - -

Donut [16] 64×A100 - 90.9 95.3 67.5 24.4* - - - - 36.8* 61.5*

LayoutLMv3 [12] 32×V100 - 84.4* 95.5 83.4 - 95.1 - - - - -

SPTS [32] 32×V100 - - - - - - 93.3 77.5 82.4 - -

PreSTU [15] n/a - - - - - - - - - 54.5 62.6

UDOP [35] n/a - - 96.0 84.7 47.4 - - - - -

PaLI-3B [5] n/a - - - - - - - - - 60.1 67.5

PaLI-17B [5] 1024×TPUv4 - - - - - - - - - 71.8 77.1
GIT2 [37] n/a - - - - - - - - - 68.4 75.1

Table 4. Comparison including additional SoTA models: UDOP [35], PaLI [5], and GIT2 [37]. Note that UDOP and PaLIs employ the
result of OCR as an input. The total number of training parameter of UDOP, PaLI-3B, PaLI-17B and GIT2 are 794M, 3B, 17B and 5.1B,
respectively. The table shows the extensive benchmarks for text-related downstream tasks. “#GPUs” denotes the total number of employed
GPUs for pre-training. The left section is VDU tasks, and the right section is STU tasks. The best performance is represented in bold. Note
that Donut was pre-trained on IIT-CDIP and SynthDoG, while Donutproto was pre-trained on SynthDoG [16]. ∗ denotes the performance
results of our fine-tuning, conducted following the author’s guidelines.

Method
IC13 End-to-End IC15 End-to-End Total-Text

N G W S N G W S N F

WOCR-read 90.4 91.8 93.7 94.3 66.4 69.4 73.3 75.7 72.6 78.9

WOCR-read w/ SCOB 92.2 93.1 94.6 95.0 71.9 74.2 76.6 78.8 75.1 79.8
Wtext-read 87.7 89.2 91.1 91.8 55.6 58.7 61.3 63.3 69.1 75.1

Wtext-read w/ SCOB 88.6 90.0 91.7 92.1 59.3 61.1 63.1 65.5 73.1 78.2

Table 5. The end-to-end recognition results on ICDAR2013, IC-
DAR2015, and Total-Text. Abbr. N, G, W, S, F: none, generic,
weak, strong, and full lexicons, respectively.

sequence generation framework, which distinguishes them
from previous methods that require specific architectural
designs for each task.

2.4. Comparison on OCR

Table 5 provides the F-measure scores for the end-to-
end OCR benchmark on scene text. Our model achieves
state-of-the-art performance in IC13 and shows comparable
results in IC15 and Total-Text compared to the alternative
state-of-the-art methods.

2.4.1 WOCR-read vs. SPTS

Our WOCR-read architecture is similar to SPTS [32], but out-
performs it significantly. Notably, WOCR-read and SPTS dif-
fer in parameters (202M vs. 36M), dataset, encoder back-
bone, and resolution. SPTS pre-trains on Curved Synthetic
Dataset 150K [22], MLT-2017 [30], ICDAR2013 [14], IC-
DAR2015 [13], and TotalText [6], followed by fine-tuning
on each target dataset. In contrast, WOCR-read generalizes not
only to OCR but also to diverse downstream tasks, using

Method G
IC13 [14] IC15 [13] TotalText [6]

N S N S N F

Box-based Localization

MTSv2 [25] 80.3 93.3 - 83.0 65.3 77.4

MTSv3 [21] 80.2 - - 83.3 71.2 78.4

DEER [17] - - 71.7 82.7 74.8 81.3

SwinTextSpotter [11] - - - 83.9 51.8 77.0

TESTR [38] - - 65.3 85.2 73.3 83.9

TTS [18] - - - 85.2 75.6 84.4

WOCR-read ✓ 90.4 94.3 66.4 75.7 72.6 78.9

WOCR-read w/ SCOB ✓ 92.2 95.0 71.9 78.8 75.1 79.8

Wtext-read ✓ 87.7 91.8 55.6 63.3 69.1 75.1

Wtext-read w/ SCOB ✓ 88.6 92.1 59.3 65.5 73.1 78.2

Point-based Localization

SPTS [32] ✓ - 93.3 - 79.5 74.2 82.4

WOCR-read w/ SCOB ✓ - 96.6 - 90.9 78.9 86.0

Table 6. The end-to-end recognition F-measure results on IC-
DAR2013 [14], ICDAR2015 [13] and TotalText [6]. Abbr. G: gen-
eration model, N, S, F: none, strong and full lexicon, respectively.

various datasets of VDU and STU. While SPTS employs
ResNet-50 and Transformer 6 layers as its encoder back-
bone, we use the Swin-transformer. Moreover, SPTS adopts
1600 resolution, while WOCR-read uses 768 resolution in pre-
training and 2560 resolution in fine-tuning. Notably, the res-
olution has a significant impact on OCR performance. We
also accelerate end-to-end recognition convergence using
the auxiliary loss [3]. Unlike SPTS, we do not use word



Method #Param G
Category

mAP
Text Title List Table Figure

PubLayNet [40] - 91.6 84.0 88.6 96.0 94.9 91.0

LayoutLMv3 [12] 133M 94.5 90.6 95.5 97.9 97.0 95.1
UDoc [8] 272M 93.9 88.5 93.7 97.3 96.4 93.9

DiT [20] 304M 94.4 89.3 96.0 97.8 97.2 94.9

WOCR-read 202M ✓ 93.1 88.4 92.9 97.3 97.1 93.8

WOCR-read w/ SCOB 202M ✓ 93.2 88.8 93.7 97.0 96.6 93.9

Wtext-read 202M ✓ 93.2 88.8 92.4 97.1 96.7 93.6

Wtext-read w/ SCOB 202M ✓ 93.5 89.1 93.0 96.9 96.8 93.9

Table 7. The public benchmark on PubLayNet [40] validation set
(mAP @ IOU [0.50:0.95]) for document layout analysis. Abbr. G:
generation model.

Models TEDS Model Params. OCR Params. Time (s/img)

LayoutLMv3 + EasyOCR 56.2 133M 25M 0.7

LayoutLMv3 + PaddleOCR 60.5 133M 12M 0.3

LayoutLMv3 + MSAzure 84.4 133M n/a 1.8

WOCR-read 88.2 202M None 1.1

Table 8. The performance and inference time on CORD testset.
LayoutLMv3 can be combined with various OCR models.

instance padding, allowing our model to learn many more
words with the same decoder sequence length by saving re-
dundant decoding sequences. While word instance padding
may help the model converge at the early training stages, it
does not significantly improve final performance.

To compare two methods that have different outputs for
coordinate information, the central point of the box of our
model is taken as a single point, and we follow the SPTS
evaluation protocol. Figures 6-8 also present the qualitative
comparisons: WOCR-read, WOCR-read with SCOB, and SPTS.
As can be seen, W is more robust to small or dense words.
As shown in Figure 8, W also predicts well for curved text.

2.5. Comparison with LayoutLMv3

As shown in Table 8, we present the performance of
LayoutLMv3 based on different OCR models. When em-
ploying lightweight OCR models like EasyOCR* and Pad-
dleOCR†, LayoutLMv3 demonstrates improved speed com-
pared to our model. However, it is important to note that
the scores obtained with these lightweight OCR models are
significantly inferior when compared to the utilization of a
commercial OCR model like MSAzure‡.

*https://github.com/JaidedAI/EasyOCR
†https://github.com/PaddlePaddle/PaddleOCR
‡https://learn.microsoft.com/en-us/azure/cognit

ive-services/computer-vision/overview-ocr

3. Visualization of t-SNE
Figures 9 and 10 provide more diverse results visual-

ized by t-SNE [36] with various perplexities. To color-code
points according to ground truth classes in sequence gen-
eration architecture, we use a teacher-forcing scheme. Note
that Figures 9 and 10 use pre-trained and fine-tuned models,
respectively.

As shown in the figures, our visualizations show sim-
ilar trends regardless of perplexity values, but visualiza-
tion for pre-trained models have a different tendency with
fine-tuned models. The ICDAR2015 dataset contains small
and blurry texts that can be inaccurately identified in low-
resolution images. Considering models are pre-trained with
small resolution (768 × 768) images, all models are inher-
ently incapable of identifying very small and blurry texts.
These texts might be visualized as multi-colored clusters
composed of different classes in Figure 9. In WOCR-read with
SCOB and WOCR-read with online text rendering, a large
multi-colored cluster remains, but scattered small multi-
colored clusters disappear. This could be because our on-
line text renderer makes the model robust against small and
blurry texts by rendering texts with various image augmen-
tations. As can be seen in Figure 10, our WOCR-read with
SCOB extracts the latent representations more discrimina-
tively than other models in the embedding space.
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Figure 3. The visualization of images generated in a one-to-one correspondence to the ICDAR2015 test set using the proposed online
renderer.

Figure 4. Examples of STU tasks. We provide a sample image for each dataset and its ground truth sequence.



Figure 5. Examples of VDU tasks. We provide a sample image for each dataset and its ground truth sequence. Note that a sample image
of InfoVQA dataset is too long vertically, thus we crop the answer part of the question and report that.



Figure 6. The visualization of OCR prediction on ICDAR2013 test set. Our W models predicts in the form of a bounding box and SPTS
predicts in the form of single-points. Note that the central points of the bounding boxes predicted by our W models are displayed for
comparison.



Figure 7. The visualization of OCR prediction on ICDAR2015 test set. Our W models predicts in the form of a bounding box and SPTS
predicts in the form of single-points. Note that the central points of the bounding boxes predicted by our W models are displayed for
comparison.



Figure 8. The visualization of OCR prediction on TotalText test set. Our W models predicts in the form of a bounding box and SPTS
predicts in the form of single-point. Note that the central points of the bounding boxes predicted by our W models are displayed for
comparison.



Figure 9. Examples of t-SNE visualization. We visualize representations extracted from the final layer of the decoder. Note that the models
are pre-trained weights. Data: ICDAR2015 test set.



Figure 10. Examples of t-SNE visualization. We visualize representations extracted from the final layer of the decoder. The models are
fine-tuned for scene text OCR. Data: ICDAR2015 test set.


