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A1. Additional Details

More Training Details. As mentioned in the paper, Lreg
of the paper in LDETR defined in Eq. 8 of the paper consists
of two types losses: L1 and Interaction-over-Union (IoU)
losses. We use the weights for L1 and IoU losses as 2 and
5, respectively as done in the baselines [2,3] for both bench-
marks. Moreover, when we define − log p̂ĵ(i)(ci) in LDETR
as Lcls, we use the weight for Lcls as 2 for both datasets.
The initial learning rates are 2 × 10−4 and 1 × 10−4 for
THUMOS14 and ActivityNet.

Further Explanation for Guidance Map. The guidance
mechanisms are the same for both the encoder and the de-
coder. Let us explain the guidance map specifically for
the decoder’s self-attention with an example in Fig. A1. If
the 1st and 2nd decoder queries are similar, they will at-
tend similar encoder tokens, as the elements a11, a12, a21
and a22 with high values in the cross-attention map A1

C in
the figure. Then, the elements g12 and g21 in the guidance
map G1

D, calculated by matrix multiplication of A1
C and its

transpose, will have high values, indicating high correlation
b/w the 1st and 2nd queries. Let us review the ideal self-
attention: the elements a12 and a21 in the self-attention map
A1

D should also have high values if the 1st and 2nd decoder
queries are similar. It implies G1

D is analogous to ideal case
of A1

D so it can be a guidance to temporally collapsed A1
D.

Motivation behind the Design. Decoder queries do not al-
ways attend foreground features exclusively; they often in-
clude both foreground and background features simultane-
ously, as in Fig. A2. Background regions serve two essen-
tial purposes for TAD. Firstly, they define the boundaries
of the actions through the surrounding background frames.
Secondly, background features provide contextual informa-
tion about the actions. Thus, a guidance map exhibiting a
strong correlation between foreground and background en-
coder features is not only intuitive but also valuable.

From sound self-attention maps in DETR of object de-
tection as in Fig. 1(a) of the paper, we observe two key
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Figure A1: Further explanation for guidance Map of the
decoder. The figure illustrates an example of constructing
guidance map for self-attention of the decoder.

Figure A2: Visualization of the decoder cross-attention
map. The figure depicts a cross-attention map of the final
decoder layer for a validation video in THUMOS14.

characteristics: 1) correlation between adjacent tokens, 2)
diversity. First of all, based on the further explanation for
guidance map in the previous paragraph, the cross-attention
map encompasses correlations within encoder features or
within decoder queries. This motivates us to make ref-
erences for self-attention maps using cross-relation. Fur-
thermore, we can introduce diversity to self-attention as
our guidance maps ensure high diversity. This is because
the diversity of guidance map follows high diversity of
the cross-attention map. Mathematically, it is trivial that
rankA = rankAA⊤ = rankA⊤A for a real matrix A.

A2. Additional Results

Number of Layers. Tab. A1 shows performances with var-
ious numbers of layers for the encoder and decoder. Note
that we use as default 2 and 4 layers for the encoder and
decoder, respectively. As seen in the table, the performance
consistently decreases when using a small number of layers



Encoder Decoder 0.3 0.4 0.5 0.6 0.7 Avg.
1 4 74.4 69.2 59.6 45.8 29.2 55.6
2 4 74.6 69.5 60.0 47.6 31.8 56.7
2 3 74.1 67.4 58.6 45.3 29.9 55.1
2 2 67.5 61.9 51.8 39.4 24.9 49.1
2 1 66.0 58.5 48.9 36.2 20.8 46.1

Table A1: Number of layers for the encoder and decoder.
The table shows performances according to the number of
layers for the encoder and decoder.

Encoder Dec.SA 0.3 0.4 0.5 0.6 0.7 Avg.
· · 70.1 62.7 51.3 36.5 20.7 48.3
✓ · 70.7 64.7 54.0 38.7 23.3 50.3
· ✓ 67.8 61.8 52.2 40.8 24.6 49.4
✓ ✓ 70.5 64.3 53.9 39.3 23.8 50.3

Table A2: Ablation on collapsed self-attention. The table
shows the results of ablation on collapsed self-attention of
DETR without our self-feedback.

Method 0.3 0.4 0.5 0.6 0.7 Avg.
DETR 70.5 64.3 53.9 39.3 23.8 50.3
DETR + Self-feedback 74.5 69.5 60.0 47.6 31.8 56.7
DINO 69.8 63.1 53.7 41.5 26.4 50.9
DINO + Self-feedback 74.7 69.4 59.7 46.8 32.9 56.7

Table A3: Recent DETR approach on THUMOS14.
The table shows the results on DINO [4], a recent DETR
method, with our self-feedback on THUMOS14.

than the default setting.

Ablation on Collapsed Self-Attention. As mentioned in
the paper, we argue that the collapsed self-attention mod-
ules in the encoder and decoder will play no role for the
task. Tab. A2 shows performances of ablation on the col-
lapsed self-attention modules. To ablate self-attention of the
encoder, we remove the entire encoder. As for the decoder,
we just remove the self-attention modules.

As seen in the table, the performance drop is quite
marginal when we ablate the entire encoder or decoder self-
attention. From this result, we find that the collapsed self-
attention modules hardly help the model to solve TAD.

Recent DETR approach with Self-Feedback. Table. A3
shows the results of deploying a recent DETR approach,
DINO [4]. While DINO demonstrates excellent perfor-
mance in object detection, simply deploying the denoising
task does not enhance DETR for TAD. Nevertheless, the
self-feedback is still valid for DINO for TAD as temporal
collapse persists with DINO.

Self-feedback Losses. We further analyzed the trend of the
feedback losses according to the epoch as shown in Fig. A3.
Our proposed pipeline helps self-attention maps hold posi-
tions in the beginning and helps play their own roles finally

Figure A3: Losses of main and feedback objectives on
THUMOS14. The figure shows the training losses of main
and feedback objectives over epochs on THUMOS14.

Figure A4: Qualitative results on THUMOS14. The fig-
ure shows qualitative examples of Self-DETR for two vali-
dation videos in THUMOS14.

Figure A5: DETAD analysis on ActivityNet. It shows the
DETAD [1] sensitivity analysis on ActivityNet.

through keeping the balance with the main objective.
Error Analysis. Fig. A4 illlustrates qualitative results for
successful (upper) and failure (lower) cases. Additionally,
Fig. A5 depicts sensitivity analysis of DETAD [1] on Ac-
tivityNet. In analysis, inferior performance of short scales
is a crucial research concern for future work.
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