
Semantic-Aware Implicit Template Learning via Part Deformation Consistency
(Supplement)

We provide additional experimental results/details and
discussion in this supplement. The supplement consists of
(1) experiment details (e.g., dataset statistics, implementa-
tion details), (2) derivation of the closed form for the opti-
mal global scaling factor r given deformation D, (3) sen-
sitivity test for different coefficients of proposed regular-
izations, (4) additional results with different semantic pri-
ors, (5-7) qualitative results on ShapeNetV2 [1], ScanOb-
jectNN [2], and DFAUST [3], (8) analysis of learned im-
plicit template fields, and (9) limitations. In each visualiza-
tion, note that all shapes placed on the ivory background
(and leftmost) are source shapes for label transfer tasks.

A. Experiment details
A.1. Data statistics

We mainly use four categories (e.g., chair, table, airplane
and car) of ShapeNetV21 [1] with labels from ShapeNet-
Part [4] and KeypointNet [5]. We follow DIF2 [6] for data
splitting and data preparation. Table 1 summarizes the data
statistics. For additional experiments in Section 5.3, first,
we use a subset of ShapeNetV2 [1] that consists of two
subcategories in each category (e.g., airplane: airliner/jet,
car: sedan/jeep, chair: straight, chair/sofa, table: pedestal
table/short table). As ShapeNetV2 contains incorrect sub-
category labels, we manually cleaned subcategory labels
and sample 50 shapes for each subcategory. To avoid any
bias towards a specific shape structure, we use an equal
number of subcategory shapes. Second, for DFAUST [3]
dataset, we select two different subjects (50002 and 50026),
where 50002 is of a larger size, being overweight and taller
compared to 50026, and four distinct actions (e.g., shake
arms, chicken wings, running on spot, and jumping jacks).

A.2. Implementation details

For feature extraction, we mainly use BAE-Net3 [7] and
follow their training schemes. In detail, we prepare 8,192
surface points from voxel grid sampling and 32,768 query
points from random sampling for each shape following IM-

1Copyright (c) 2022 ShapeNET.
2https://github.com/microsoft/DIF-Net
3https://github.com/czq142857/BAE-NET

Table 1. Data statistics.
Category

airplane car chair table

Training data 3500 3000 4000 4000
Part labeled data 3195 2728 3551 3671

Keypoint labeled data 889 870 577 545

Evaluation data (recon) 100 100 100 100

Net [8]. We train the encoder with a batch size of 1 for
60 epochs, using Adam [9] optimizer with a learning rate
of 0.0001 for car and 0.00005 for the rest of categories. It
takes about 2 hours on average to fully train the encoder
with a single GPU (RTX 2080ti). For the hyperparameter
k, we use 6/8/4/4 for airplane/car/chair/table category, and
we use 256 for the global latent code dimension.

For training deformation field Dθ1 and template field
Tθ2 , we train the model with a batch size of 128 for 60
epochs, using Adam [9] optimizer with the learning rate of
0.0001. It takes about 6 hours on average to fully train the
model. Also, we use 256 for the dimension of each shape
latent code and we use 64 for the dimension of each part
deformation prior.

For the proposed regularizations, we grid search co-
efficients such as global scale consistency Lscale and
global deformation consistency Lgeo in the range of
[10,500]/[50,100]. For the most influential regularization,
which is part deformation consistency Lpdc geo, we grid
search the coefficient in the separate range according to the
categories (e.g., [1000,2000] for chair, [750,1000] for air-
plane and car, [250,500] for table). The final coefficients
we used are described in Table 2. For the rest of the reg-
ularizers, we fix the coefficient as 50 for Lpdc sem, 100 for
Lnormal, 1e6 for Lemb in every category. For the regularizers
for deformation smoothness Lsmooth, and minimal correc-
tion Lc, we grid search in the range of [1,5,10]/[50,100,500]
and apply 10/5/5/1 and 50/10/500/50 in sequential order to
the four categories: airplane, car, chair, and table.

For baseline models, we validate surrogate tasks with
provided pretrained models; if none exists, we train the
model from scratch based on source code from the origi-



Table 2. Regularization coefficients for each category.
coef. Lpdc geo Lscale Lgeo

airplane 750 10 50
car 1000 10 50

chair 2000 500 100
table 250 500 100

nal authors, e.g., DIT4 and AtlasNetV25. Unlike implicit
template learning models, AtlasNetV2 [10] does not learn a
global template, rather it learns decomposed local patches.
Here, for AtlasNetV2 [10], we evaluate the part label trans-
fer task as identical as DIF [6], and also similarly evaluate
the keypoint label transfer task, where we use the average
points of each corresponding keypoint from source shapes
as transferred keypoint labels. Lastly, all experiments are
implemented in Pytorch6 [11] and Pytorch3D [12] and con-
ducted on 4 NVIDIA RTX A6000.

B. Proof of global scaling factor r

We propose global scale consistency regularization to
preserve the scale of the implicit template field against
strong deformations based on the following lemma and its
proof.

Lemma 1. Given a scalar field (shape) X ∈ R3×M and a
non-rigid deformation D : x ∈ R3 → ∆x ∈ R3, we define
a global scaling factor r of D as an optimal solution to the
following problem:

r∗ = argmin
r

M∑
i=1

∥xi +∆xi − rxi∥22. (1)

Then, the optimal solution can be analytically obtained by

r∗ =

∑M
i=1 x

⊤
i (xi +∆xi)∑M

j=1(x
⊤
j xj)

, (2)

where xi ∈ X and ∆xi ∈ D(xi).

Proof. We defined the global scaling factor as the optimal
solution to the following problem:

r∗ = argmin
r

M∑
i=1

∥xi +∆xi − rxi∥22. (3)

To find a closed-form solution, we differentiate (3) by r:

∂

∂r

M∑
i=1

∥xi+∆xi− rxi∥22 =

M∑
i=1

(xi+∆xi− rxi)
⊤xi

=

M∑
i=1

(xi +∆xi)
⊤xi −

M∑
j=1

rx⊤
j xj = 0 (4)
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Finally, we can acquire the solution r∗ =
∑M

i=1 x⊤
i (xi+∆xi)∑M

j=1 x⊤
j xj

from (4).

In this paper, we encourage the learned implicit template
to preserve its scale by the average scale of N deformed
shapes in a single batch. That is, we simply estimate the
global scaling of all N shapes in a mini-batch by rbatch =
N∑

s=1

M∑
i=1

xs⊤
i (xs

i+∆xs
i )

N∑
s′=1

M∑
j=1

xs′⊤
j xs′

j

≈ 1. This treats all shapes as a point

cloud and finds one global scaling of it.
Further, we can impose a slightly different regulariza-

tion with the expectation of rs. Given a set of points {xs
i}i

in shape s, a shape-specific global scaling factor rs and its
expectation are defined as

rs =

M∑
i=1

xs⊤

i (xs
i +∆xs

i )

M∑
j=1

xs⊤
j xs

j

Es[rs] =

N∑
s=1

1

N
rs

(5)

Then, the regularizer is given as

Lscale = |E[r]− 1|. (6)

We observed that in our preliminary experiments, these
regularizations above allow more flexibility than enforcing
the global scaling of each individual shape, i.e.,

∑N
s=1 |rs−

1|. The final equation of global scaling consistency regular-
ization is in (9) of the main paper.

C. Sensivity test for different coefficients
We analyze the effect of coefficients for suggested regu-

larizations (Lpdc geo/Lgeo/Lscale). We perform experiments
with a sub-dataset (same as Table 5 in the main paper) for
ShapeNet airplane/chair and report mIoU as 2-shot part la-
bel transfer results. Figure 1 shows that Lpdc geo (high-
lighted with the red box for cases without Lpdc geo) sig-
nificantly improves performance. When the coefficient of
Lpdc geo is properly set, our method is robust to the choice
of weights for other losses: Lgeo and Lscale. As shown in the
boxes highlighted in yellow and green, our method stably
achieves good performance regardless of the coefficients for
Lgeo and Lscale.

D. Different semantic priors
We provide an additional experimental result with RIM-

Net [13], which is a self-supervised co-segmentation model
for 3D object shapes. The pre-trained RIM-Net7 is used and

7https://github.com/chengjieniu/RIM-Net



Figure 1. Sensitivity test for Lpdc geo/Lgeo/Lscale.

Figure 2. Keypoint transfer performance for DFAUST [3]. We
measure correspondence accuracy (PCK score).

we conduct 2-shot part label transfer with the subcategories
for the chair of ShapeNetV2. Since RIM-Net provides dif-
ferent levels of part semantics, e.g., two-part partitions for
level 1, and eight-part partitions for level 3, we leverage
this characteristic to evaluate our framework across differ-
ent levels of part quality. Based on Table 3, we believe that
even if the given prior does not have high-level semantics,
our framework improves performance as long as the prior is
consistent.

Table 3. Utilizing different semantic priors. 2-shot part label
transfer in subcategories (straight chair and sofa) for ShapeNet
chair.

Ours-RIM(lv1) Ours-RIM(lv3) Ours-BAE DIF
chair 70.1 78.3 80.7 67.2

Figure 3. Visualization of learned implicit template fields for
four categories by extracting different iso-surfaces.

E. Qualitative results on ShapeNet

We provide additional visualizations as in Figure 4, Fig-
ure 5, and 6 to show keypoint/part label/texture transfer re-
sults on ShapeNetV2 [1]. These results illustrate the impor-
tance of imposing semantics in implicit template learning
for generic object shapes.

F. Keypoint transfer on ScanObjectNN

In Figure 7, we conduct qualitative analysis via keypoint
transfer task on ScanObjectNN [2] to validate the robust-
ness of our method even with the domain gap between syn-
thetic data and real-world data. We transfer the keypoint
labels of chair/table categories in ShapeNetV2 [1] to cor-
responding shapes in ScanObjectNN [2]. Since shapes in
ScanObjectNN are real-world scanned data, i.e., they are
not always watertight, we only use scanned surface points
for inference. Our framework shows superior performance
over baseline models, supporting the importance of under-
standing semantics for shape correspondence. Visualiza-
tions of the chair in Figure 7 are clear examples. Two key-
points of pea-green and orange are geometrically close but
semantically different in the source chair. After transferring
keypoints, our framework is the only model that enables dis-
entangling two keypoints in the target chair, where arms and
legs are separated, unlike the source chair.



G. Keypoint transfer on DFAUST
We provide detailed keypoint transfer results to evalu-

ate unsupervised correspondence performance on non-rigid
shapes [3] in Figure 2 and Figure 8. For evaluation, we
assume that we do not know the ground truth correspon-
dence between human shapes. Although learning a suitable
global template for various actions with large local defor-
mation scales is a challenging task, our method consistently
shows better and more consistent correspondence accuracy
compared to the baseline, as shown in the following fig-
ures. In particular, we present the full keypoint transfer re-
sult in Figure 2, where we use source shape/selected key-
points as in the shape in Figure 8 (leftmost shape in beige).
The performance is PCK scores given a continuous range
of thresholds. We observe our framework (red) consistently
outperforms the baseline (blue), indicating that learned cor-
respondences from our framework are more accurate. Visu-
alizations in Figure 8 also support our framework, e.g., our
model transfers “hand” keypoints (highlighted in blue balls)
while the baseline transfers them to the waist or the elbow.

H. Analysis of learned implicit template fields
Figure 3 illustrates the iso-surfaces of four categories

(e.g., airplane, car, chair, table) extracted from learned im-
plicit template fields. Our framework learns a template
by imposing semantically consistent mapping, rather than
learning realistic templates. We observe that the iso-surface
of the learned templates sometimes has stretched parts in
more challenging categories, which is beneficial for seman-
tically mapping shapes with high variability. Thus, it leads
to improved performance on dense correspondence.

I. Limitations
Since we utilize self-supervised segmentation models for

knowledge distillation, the performance can be highly de-
pendent on the part segmentation quality of the feature ex-
tractor. However, we have demonstrated that our frame-
work consistently improves correspondence performance
with various semantic priors, even with coarse part seman-
tics such as BAE-Net [7] with k = 2 or level 1 RIM-
Net [13]. Note that, unlike 2D domain, there are no power-
ful self-supervised segmentation models available yet, such
as DINO [14]. If such models emerge for 3D domain, our
framework can potentially achieve even better performance.
These are left for future works.



Figure 4. Additional comparison on keypoint transfer in ShapeNetV2.

Figure 5. Additional comparison on part label transfer ShapeNetV2.



Figure 6. Additional comparison on texture transfer ShapeNetV2.



Figure 7. Comparison on keypoint transfer in ScanObjectNN [2]. We transfer keypoint from synthetic data (ShapeNetV2) to real-world
scanned data (ScanObjectNN) to validate the robustness towards the domain gap (zoom-in for better visualization).

Figure 8. Comparison on keypoint transfer in DFAUST [3]. Blue balls indicate keypoints for both hands, while red balls indicate
keypoints for the right knee and the left foot (zoom-in for better visualization).
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