
Convolutional Networks with Oriented 1D Kernels:
Supplementary Material

In this supplementary material, we present additional ex-
periments including ERF analysis in Section 1 and sparsity
in Section 2 and present additional training plots in Sec-
tion 3.

We also provide a more theoretical overview of oriented
1D kernels, and describe how we come up with our formu-
lation of oriented 1D kernels in Section 4, discuss design
choices of oriented 1D kernels in Section 5, prove that a
2×2 downsampling layer can be seen as a sum of oriented
kernels in Section 6, outline how to learn orientation in Sec-
tion 7 and establish a connection with anisotropic gaussian
kernels in Section 8.

Finally, we provide implementation notes in Section 9,
describe training settings in Section 10 and outline limita-
tions in Section 11.

1. Effective Receptive Field (ERF) Analysis
In this section we provide an analysis of the ERF of our

models. According to [15], ERFs scale in O(K
√
L) which

is linear in the kernel size K and only sub-linear in depth L.
This demonstrates the advantage of kernel size over depth.

We follow the approaches provided by RepLKNet [8]
and SLaK [13] to compute the ERF of our models. We sam-
ple 1000 images resized to 1024× 1024 from the ImageNet

(a) 2D (b) 1D

(c) 2D++ (d) 1D++

Figure 1: Effective Receptive Field (ERF) for Base models.
A more widely distributed colored area indicates a larger
ERF. We see that our networks increase the ERF signifi-
cantly whilst preserving the overall shape.

validation set, and for each pixel of every image we com-
pute its contribution to the central point of the feature map
generated in the last layer. We then average the contribution
across all input channels and images. Results are shown in
Figure 1.

From Figure 1, we see that ConvNeXt has a concen-
trated ERF around the input center. This is different from
ConvNeXt-1D, which has a significantly wider ERF. It
manages to preserve the concentration around the center
whilst widening the receptive field, albeit at the cost of in-
troducing a horizontal/vertical bias. This is fixed by the
augmented networks, which are able to preserve the con-
centration around the center and introducee a wide circular
receptive field. Our networks are therefore able to balance
the focus between local details and the attention to long-
range dependencies.

Figure 2: Sparsity analysis on Base models: Proportion of
weights in absolute value above 5% of maximum. We con-
sider only the 1st depthwise convolution in each layer of
stages 1-4. We see that fully 1D networks (1D and 1D++)
are up to +20% more dense than 2D networks (2D and
2D++).

(a) no-EMA 1D/1D++/2D/2D++

(b) EMA 1D/2D

(c) EMA 2D++/2D

(d) EMA 1D++/2D

Figure 3: ImageNet EMA accuracy plots for Base models.
2D in green, 2D++ in purple, 1D in blue, 1D++ in red.

2. Sparsity analysis
In this section, we analyze the sparsity introduced by the

use of oriented 1D kernels in our 1D, 1D++ and 2D++ mod-
els. We consider only the 1st depthwise convolution in each
layer of stages 1-4. This depthwise convolution is present
and common to all block designs. From Figure 2 we see
that fully 1D networks (1D and 1D++) are up to +20% more
dense than 2D networks (2D and 2D++). This is to be ex-
pected as we decrease the number of parameters from 7× 7
to 1 × 31 by design. It also confirms the usefulness of ori-
ented 1D kernels for introducing large kernels in ConvNets:
not only do they widen the receptive field, but they also re-
duce the number of spatial parameters required to do so,
thereby enabling more efficient learning.

3. Training plots
In this section, we plot ImageNet validation set accura-

cies of Base models in Figure 3. We also aggregate statis-
tics on these trajectories in Table 1. We see that 1D++/2D++
models exhibit +0.6 and +0.5 EMA accuracy improvements
versus ConvNeXt when averaged over epochs 150-250.
This suggests that augmented 1D networks perform better
than ConvNeXt during training.

For the 1D++ Base model, this accuracy improvement
during training is significantly larger compared to the +0.1
final accuracy difference versus ConvNeXt. This discrep-

(a) no-EMA 1D/1D++/2D/2D++

(b) EMA 1D/2D

(c) EMA 2D++/2D

(d) EMA 1D++/2D

Figure 4: ImageNet EMA accuracy plots for Tiny models.
2D in green, 2D++ in purple, 1D in blue, 1D++ in red.

ancy suggests that our 1D++ model overfits and underper-
forms versus what it is expected to achieve. We have not
fine-tuned any hyperparameter other than 1D parameters, to
enable fair comparisons with ConvNeXt. We think that un-
derstanding the causes of this overfitting would enable 1D
networks to perform better than they currently do on larger
scales. We believe that they should be able to attain the +0.5
training average improvement presented in Table 1, as this
bound is already achieved by Tiny models.

Model Acc. Difference Acc. Difference Discrepancy

Epochs 150-250 Final

ConvNeXt-T / / /
ConvNeXt-T-1D +0.0 +0.2 +0.2
ConvNeXt-T-1D++ +0.8 +0.7 -0.1
ConvNeXt-T-2D++ +0.7 +0.5 -0.2
ConvNeXt-B / / /
ConvNeXt-B-1D +0.1 +0.1 0.0
ConvNeXt-B-1D++ +0.6 +0.1 -0.5
ConvNeXt-B-2D++ +0.5 +0.3 -0.2

Table 1: Accuracy differences w.r.t ConvNeXt. On the left,
averaged over epochs 150-250, on the right, accuracy at
epoch 300. Discrepancy measures the difference between
these 2 quantities. We see that there is a strong discrep-
ancy for ConvNeXt-B-1D++, which suggests that it under-
performs.

4. Oriented 1D kernels: Mathematical formu-
lation

In this section, we present the intuition behind the mathe-
matical formulation of oriented 1D depthwise convolutions.
We start by introducing oriented kernels in the more general
2D setting, discuss the intuition behind the formula and spe-
cialize it to the 1D case.

To simplify the problem, we will only consider a single
angle θ but the formulation can be easily generalized to sup-
port a per-channel angle θ ∈ RC as done in the paper.

4.1. 2D formulation
Let x ∈ RN×H×W×C denote the input, w ∈ RR×S×C

the filter and y ∈ RN×P×Q×C the output of the depth-
wise convolution. N is the batch size, C the number of
channels, H,W the input height and width, P,Q the output
height and width and R,S the filter height and width. Let
(padh, padw) be the padding, (strh, strw) the stride and θ
the angle of the oriented kernel.

Definition 1 We define a depthwise convolution of an ori-
ented 2D kernel as:

∀n∈J0, N−1K, p∈J0, P−1K, q∈J0, Q−1K, c∈J0, C−1K,

ynpqc =
∑

0≤r<R,0≤s<S

xnhwcwrsc (1)

where
(
h
w

)
= Rθ

(
r − padh
s− padw

)
+

(
p · strh
q · strw

)
(2)

and Rθ =

(
cos θ − sin θ
sin θ cos θ

)
is a rotation matrix of angle θ

(3)

We refer to Equation (2) as the coordinate equation. Be-
cause h,w, p, q, r, s are all integers we need to introduce a
discretization scheme for this formula to make sense. We
will ignore this issue for now and discuss it in Section 4.2.

Intuition. The goal of Equation (2) is to rotate the filter
by an angle θ, which is accomplished by introducing the
rotation matrix Rθ. Intuitively, every increment of r or s
results in an increase by (cos θ, sin θ)T or (− sin θ, cos θ)T

of the left-hand side of Equation (2) after rotation by Rθ.
By doing so, we are effectively changing the direction of
the increment of r and s from the vertical and horizontal
axes to arbitrary oriented axes.

Convolution origin. The origin of the convolution is ob-
tained by taking r = s = 0: we see that it is the same as
the non-oriented case. This is guaranteed by our choice of
Equation (2) and is not necessarily preserved by other for-
mulations.

4.2. Discretization and Interpolation
Equation (2) makes the assumption that we can sample

from a continuous input domain. However, due to the dis-

crete nature of the input and filter, it becomes necessary to
introduce a discretization scheme.

The simplest discretization scheme consists of rounding
down the coordinates on the right-hand side of Equation (2):
this approach is fast but results in coarse approximations of
orientation.

An alternative approach would be to do bilinear interpo-
lation which allows us to account for finer angles. However,
bilinear interpolation increases the MADs by a factor of 4×
and results in at least 2× the runtime on our internal bench-
marks Table 2. This makes an oriented 1×31 kernel 2× as
expensive as a 7×7 kernel.

In this paper, we choose to adopt the round-down dis-
cretization scheme, to showcase the usefulness and practi-
cality of oriented 1D kernels. Under this scheme, Equa-
tion (2) becomes:

(
h
w

)
=

⌊
Rθ

(
r − padh
s− padw

)⌋
+

(
p · strh
q · strw

)
(4)

As discussed in this section, there exists many valid dis-
cretization schemes, and we leave their exploration as future
work.

Implementation K Inference Total
Runtime Runtime

Round-down 1D 31 4.2±0.1ms 9.9±0.1ms
Bilinear 1D 31 8.9± 0.1ms 22.3±0.1ms

2D 7 8.3±0.1ms 22.6±0.1ms

Table 2: Runtime comparison between bilinear interpola-
tion and other approaches. Bilinear interpolation results in
a 2× speed reduction. The tests are done on an NVIDIA
RTX 3090 for N = 64, C = 512, H = W = 56, aggre-
gated over 100 runs preceded by 10 dry runs. 2D refers
to a PyTorch/CuDNN 2D depthwise convolution. Inference
Time measures only forward pass, Training Time includes
backpropagation.

4.3. 1D formulation
Oriented depthwise 1D convolutions are specializations

of Equation (2) for r = padh = 0, padw = pad and
strh = strw = str. We use round-down as our discretiza-
tion, as shown in Equation (4), which results in the follow-
ing equation:(

h
w

)
= str ·

(
p
q

)
+

⌊
(k − pad) ·

(
− sin θ
cos θ

)⌋
(5)

where K is the kernel size and k varies from 0 to K − 1.
This is the formulation of oriented 1D kernels that we have
considered in the paper.

From now on, we will restrict our study to Equation (5).

5. Oriented 1D kernels: Design choices
Let us now delve into the design choices regarding ori-

ented 1D kernels.

5.1. Padding
The way we express padding in Equation (5) turns out to

be essential in preserving accuracy. If we were to naively
replicate the non-oriented case and write Equation (5) as:(

h
w

)
= str ·

(
p
q

)
+

⌊
k ·

(
− sin θ
cos θ

)⌋
− pad (6)

then the resulting formula would lead to different behaviors
for vertical and horizontal convolutions and more generally
result in uncentered convolutions. In turn, this greatly de-
grades accuracy. In contrast, Equation (5) adapts naturally
to different angles and for pad =

⌊
K
2

⌋
does not result in

accuracy degradation. We consider only odd K in our ex-
periments and fix pad =

⌊
K
2

⌋
to obtain centered oriented

convolutions.

5.2. Rotation vs Shearing
Instead of applying a rotation to the coordinates of the

convolution we can consider more relevant transformations.
Let’s first rewrite Equation (5) as:(

h
w

)
= str ·

(
p
q

)
+

⌊(
δhk

δwk

)⌋
(7)

in terms of the filter offsets:
(
δhk

δwk

)
= Rθ

(
0

k − pad

)
(8)

Intuitively, the filter offset (δhk, δwk)T is the offset in
the input grid where we apply the filter weight wk, relative
to the convolution origin.

Instead of sampling filter offsets on concentric circles
with increasing and regular k radii, we can choose to sample
points lying on integer rows or columns. The first approach
is equivalent to rotating the filter axis as shown in Figure 5a,
whereas the second can be seen as shearing the filter axis
parallel to the columns or rows as depicted in Figure 5b.

(a) Rotation (b) Shear

Figure 5: Different Parameterizations

The usefulness of formulation 5b becomes clear on the
following example. For θ =−45◦, pad= 0 and k varying

between 0 and K−1, formulation 5a outputs non-integer fil-
ter offsets (δhk, δwk)T = k(

√
2/2,

√
2/2)T , whereas for-

mulation 5b outputs integer filter offsets (δhk, δwk)T =
k(1, 1)T . In this particular case, the latter approach removes
the need for discretization.

More generally, formulation 5a results in filter offsets
(−k sin θ, k cos θ)T . With rounding down as discretization,
this is sub-optimal as it leads to some level of redundancy
in filter offsets.

Formulation 5b is more complicated to handle and gives
rise to two separate cases. If we intersect the filter axis
with integer columns we get filter offsets (−k tan θ, k)T .
If we instead intersect with integer rows, we get offsets
(k,−k cot θ)T . By forcing one coordinate to be an inte-
ger we remove the redundancy encountered in formulation
5a but we enlarge the kernel “length” and introduce higher
complexity due to the separate handling of cases.

Mathematically we can introduce the shear matrices

Sx
θ =

(
1 − tan θ
0 1

)
and Sy

θ =

(
1 0

cot θ 1

)
and rewrite

filter offsets in terms of Sx
θ and Sy

θ instead of Rθ.
More thorough testing is necessary to compare both for-

mulations, and is left for future work.

6. Proof that the downsampling layer is the
sum of 2 oriented kernels

In this section, we prove the claim that we can express
a downsampling layer as the sum of 2 oriented kernel con-
volutions by using an even-sized kernel specialization of
Equation (5) and carefully choosing the padding.

Oriented convolution. First, we define a vanilla convo-
lution with an oriented 1D kernel as:

ynpqg =
∑

0≤c<C,0≤r<R,0≤s<S

xnhwcwgrsc (9)

where g denotes the output channel and (h,w)T verifies
the coordinate Equation (5). Note that we suppose θ = θgc
so that the angle can vary both with respect to the output
and input channels.

Even-sized kernel. Next, we generalize Equation (5)
for even-sized kernels by introducing an exterior padding
(padh, padw) which takes care of the padding asymmetry
introduced by even-sized kernels [23].(
h
w

)
= str ·

(
p
q

)
+

⌊
(k − pad) ·

(
− sin θ
cos θ

)⌋
−
(
padh
padw

)
(10)

Proof. Claim 1: We claim that a 2×2 downsampling layer
can be decomposed as the sum of a diagonal and anti-
diagonal convolution. This follows from the linearity of a
convolution: if W1 and W2 are two 2D kernels and I is any

input, then the convolution of I by W = W1 +W2 equals
the sum of the convolutions of I by W1 and convolution of
I by W2. By defining W1 as the 2×2 diagonal kernel, and
W2 as the anti-diagonal kernel, this implies that the sum
W = W1 +W2 can express any 2×2 kernel, which proves
our claim.

Claim 2: We now claim that both diagonal and anti-
diagonal kernels can be seen as even-sized oriented 1D ker-
nels as defined in Equation (10). We do this by carefully
choosing θ and paddings pad, padh and padw. In fact, a di-
agonal kernel can be expressed using θ = −π

4 , pad = 1 −√
2 and padh = padw = 0. Similarly, an anti-diagonal ker-

nel can be expressed using θ = π
4 , pad = 1−

√
2, padh = 1

and padw = 0. Contrary to the diagonal kernel, we see that
the anti-diagonal kernel requires the introduction of a verti-
cal padding padh = 1. As explained earlier, this is neces-
sary because of the asymmetry of even-sized kernels.

Summary: We can now combine claims 1 and 2 to de-
duce that a downsampling layer can be seen as the sum of 2
oriented kernel convolutions.

In this section, we have introduced even-sized oriented
kernels. We leave their exploration as future work.

7. Angle backpropagation
Instead of seeing θ as a fixed parameter, we can instead

try to learn it. To accomplish this, it becomes necessary to
introduce a formulation of Equation (5) which is differen-
tiable w.r.t θ.

The first idea is to replace the sum over the kernel size
k as a sum over (h,w, k) and introduce a soft distribution
ωpqhwk(θ) to weight the sum, as such:

ynpqc =
∑
h,w,k

ωpqhwk(θ)xnhwcwck (11)

Here h and w are bound variables. Contrast with the orig-
inal formulation where h and w are functions of k as pro-
vided by Equation (5)

ynpqc =
∑
k

xnhwcwck (12)

The second idea is to relax the Equation (5) constraint to
include non-zero contributions for (h,w, k) which do not
verify Equation (5) but are close to it. A natural choice is
to model ωpqhwk(θ) as a gaussian distribution with variance
σ2 over the squared Equation (5) error, as illustrated in Fig-
ure 6.

More formally, we introduce:

ωpqhwk(θ) = exp(− (h− αpk(θ))
2 + (w − βqk(θ))

2

2σ2
)

where

{
αpk(θ) = p · strh − (k − pad) · sin θ
βqk(θ) = q · strw + (k − pad) · cos θ

(13)

(a) σ = 1.0 (b) σ = 0.5 (c) σ = 0.25

Figure 6: Example of soft distribution for a diagonal kernel

Modulo discretization, this formulation generalizes
Equation (12). Indeed, it can be seen as Equation (11) for
the special case σ = 0 or in other words

ωpqhwk(θ)=1(fp,k(θ)=h)1(gq,k(θ)=w)

By introducing Equation (11) and our parameterization
(7) of ω, we have described a differentiable formulation of
Equation (12) which is differentiable w.r.t θ.

Intuitively, σ models the error in constraint Equation (5)
and consequently how much we want neighboring pixels to
influence the output of the convolution. By varying σ we
control the width of this band as well as the pixels that have
an influence over the optimization of θ.

However, by increasing σ, we sacrifice speed: the com-
putational cost rises from O(K) to O(HWK). This can be
offset to O(r2K) by leveraging the exponential decay of ω
to cut off contributions below a threshold exp(− r2

2σ2). r can
be seen as the radius by which we expand the kernel.

Optimizing θ is beyond the scope of the paper and this
section is provided only for reference. We leave exploration
of this idea as future work.

8. Connection with 2D Gaussian anisotropic
filters

In this section, we make a parallel between oriented 1D
kernels and gaussian anisotropic filters. Before going fur-
ther, let’s first introduce 2D gaussian filters, which are com-
monly used in signal processing [2] as:

Definition 2 A 2D gaussian filter k(x,y) with positive
semi-definite covariance matrix Σ ∈ R2×2 is defined as:

k(x,y) =
1√

2π|Σ| 12
exp(−1

2
(x− y)TΣ−1(x− y))

(14)for given x,y ∈ R2.

1. In the case where Σ = σI2 for a given σ ≥ 0, we say
that the filter is isotropic.

2. In the case where Σ = Diag(σ1, σ2) we say that the
filter is orthogonal.

3. Otherwise, the filter is said to be anisotropic.

Figure 7: Examples of 2D gaussian filters.

8.1. Parallel with gaussian anisotropic filters
In gaussian filtering literature [9], it is commonly stated

that 2D isotropic and orthogonal gaussian filters are separa-
ble and can be decomposed as the recursion of a horizontal
1D gaussian filter and of a vertical 1D gaussian filter. In
practice, gaussian filters are used in the form of finite-sized
convolutions. This means that 2D isotropic/orthogonal ker-
nels can be decomposed as the recursion of a horizontal and
vertical convolution.

According to [9, 12], this fact is not limited to “axis-
aligned” gaussian filters: any 2D gaussian filter can be ex-
pressed as the recursion of two oriented 1D gaussian fil-
ters, as dictated by the eigenvectors of its covariance ma-
trix. Consequently, the combination of two oriented 1D
convolutions can represent any 2D gaussian filter includ-
ing anisotropic ones, thereby suggesting that oriented 1D
kernels are more expressive than non-oriented kernels. The
situation is summarized in Table 3.

Convolution kernel Isotropic Orthogonal Anisotropic
Non-oriented Yes Yes No
Oriented Yes Yes Yes

Table 3: Summary of the expressiveness of oriented and
non-oriented convolution kernels

9. Implementation Notes
In this section, we look at the challenges involved in im-

plementing fast depthwise convolutions for oriented 1D ker-
nels. We present here two main approaches to implement
oriented kernels: the filter rotation approach, which rotates
the kernel, and the input rotation approach, which keeps
the kernel fixed and instead rotates the input in the opposite
direction. Our best algorithm runs up to 50% faster than Py-
Torch on 1 NVIDIA RTX 3090, as presented in the paper.

9.1. CUTLASS GEMM with Rotated Filter
Our goal is to design an implementation that works for

large kernel sizes K ≥ 7. To that effect, our first pro-
posed implementation extends an open-source library that
achieves state-of-the-art performance on 2D depthwise con-
volution, namely MegEngine Cutlass[8] 1. It leverages spe-
cialized GEneral Matrix Multiplication (GEMM) primitives
that are known to be very efficient [16]. The codebase was
initially introduced in [8] and forked from NVIDIA Cut-
lass[17] 2.

The original non-oriented implementation computes the
offsets (h,w) by linearly increasing k, thereby achiev-
ing contiguous memory reads. In this proposed imple-
mentation of oriented kernels, we instead compute (h,w)
using Equation (5) which unfortunately introduces non-
contiguous memory read issues.

Using this proposed implementation results in uneven
speeds with respect to a given angle θ: 45◦ angles are more
than 2× as slow compared to horizontal kernels (see Ta-
ble 4).

9.2. CUTLASS GEMM with Rotated Input
As an alternative to rotating the filter, we can instead

keep the filter fixed, and rotate the input in the opposite di-
rection. The selling point of this approach is that we can use
existing optimized depthwise convolution implementations
without modification. The downside is that we introduce
extra overhead by adding input and output image rotation
steps. Furthermore, to preserve the information content, the
rotations grow the image size HW up to 2× its original
value, which leads to slower convolutions. We consider ad-
ditional optimization tricks for this approach such as image
compression.

One of the drawbacks of the rotated input approach is
that it introduces aliasing due to image rotation as shown
in Figure 8. For small image sizes, this greatly perturbs
the output and leads to significant drops in accuracy. We
considered several interpolation schemes (bilinear, lanczos
[22], ...) to account for aliasing but they do not help with
accuracy.

1https://github.com/MegEngine/cutlass
2https://github.com/NVIDIA/cutlass

https://github.com/MegEngine/cutlass
https://github.com/NVIDIA/cutlass

(a) Rotated filter
convolution

(b) Rotated input
convolution: Near-
est neighbor

(c) Rotated input
convolution: Bilin-
ear interpolation

Figure 8: Qualitative analysis of aliasing in the rotated input
approach. Input is a tiled square with tiles of varying color.
Even with bilinear interpolation, border error is significant,
which becomes a problem for real-world inputs.

9.3. CUDA from scratch
Our best performing algorithm is a custom CUDA kernel

implemented from scratch. The idea of the algorithm stems
from the observation that 1D depthwise convolutions incur
a low computation-to-bandwidth ratio: in other words, opti-
mizing data access pattern is critical in achieving good per-
formances. Consequently, we design a CUDA kernel from
scratch that optimizes these data patterns. In the end, we ob-
tain an implementation that is even faster compared to non-
oriented horizontal PyTorch[18]/CuDNN[4] convolutions.

We accomplish this by loading the whole input in shared
GPU memory before starting our computations. This al-
lows us to avoid the costly non-coalesced global memory
accesses caused by the oriented nature of our computations.
However, for larger image sizes, the input does not fit into
shared GPU memory. As a result, we choose to cut the
image into vertical bands and compute oriented 1D convo-
lutions on each band. We also attempt to maximize data
sharing by splitting the data loads between GPU threads
so that every pixel of the input is read only once (if we
ignore bordering bands). We further optimize data access
by adopting vectorized loads, which increase data through-
put significantly. Finally, we find the set of parameters that
maximize performance on a given hardware, and achieve
better performance compared to PyTorch, even though we
support arbitrary oriented 1D kernels.

9.4. Rotated Input Compression
From a performance perspective, the input rotation ap-

proach suffers from two inefficiencies: 1) it introduces ad-
ditional pre- and post-convolution steps, which can increase
runtime by up to 40% compared to a non-oriented horizon-
tal convolution (see Table 4), and 2) the image rotation can
grow the intermediate image size to 2× the original size, as
shown in Figure 9a. This means that the convolution can be
2× as costly.

To mitigate issue 2), we can compress the rotated image
in a way that does not affect the convolution operation as
shown in Figure 9b. Intuitively, we compress together the
tips of the square in order to reduce H , and we align the

(a) Rotated input
(b) Compressed input

Figure 9: Visualization of a tiled square rotated by our ro-
tated input kernel. After rotation, the input is fed to a stan-
dard non-oriented horizontal 1D kernel and the output is ro-
tated back to obtain the final result. On the right, we show
how compression intuitively splits the input before passing
it to the horizontal kernel - the speedup comes from reduc-
ing the input size and avoiding unnecessary computations.

sides of the square with the left border to reduce W . In
theory, we can expect to reduce the image size to its original
value, because area is preserved through rotation. We add
a padding between the two blocks to preserve the result of
the convolution. This increases the compressed size H ′W ′

by KW ′.
In practice, this compression improves overall speed.

However, it requires careful implementation as it can slow
down the rotation steps quite significantly.

9.5. Benchmarks
Table 4 compares training speeds for our 1D oriented

kernel implementations. Table 5 presents a more compact
summary, and shows training speed as well as inference
speed. Our CUDA from scratch beats consistently all other
implementations regardless of angle with intelligent data
access patterns, but starts to fall off when computation be-
comes the bottleneck. Our CUTLASS based methods either
rotate the filter, which leads to non-contiguous/slow mem-
ory accesses; or either rotate the input, which enable the use
of the efficient horizontal CUTLASS kernel but introduce
aliasing and grow the image size HW up to 2×.

We complement these kernel-level benchmarks with
network-level benchmarks in Table 6. It compares training
and inference throughputs measured in img/s of ConvNeXt-
based models versus RepLKNet and SLaK, on an input of
size 2242.

In this paper, we focused on Depthwise Separable
Convolutions (DSCs) as most modern ConvNets combine
depthwise and pointwise together. Note that this setting is
more challenging as improving the performance of depth-
wise convolutions does not necessarily lead to better DSC
performance. If we remove this assumption, our oriented
1D depthwise convolutions are clearly faster than 2D depth-
wise convolutions, in theory and practice. We show this for
large kernels in Table 1 of our paper, and add benchmarks
in Table 7.

K 7 31
Angle 0 22.5 45 67.5 90 112.5 135 157.5 0 22.5 45 67.5 90 112.5 135 157.5

H = W = 14
PyTorch/CuDNN Horiz. only 0.4 0.4

CUTLASS Horiz. only [8] 0.6 0.6
CUTLASS Rotated Filter (Ours) 0.7 0.7 0.8 0.8 0.8 0.6 0.6 0.7 0.7 0.8 0.8 0.8 0.8 0.7 0.6 0.8
CUTLASS Rotated Input (Ours) 0.9 1.5 1.5 1.5 1.4 1.5 1.0 1.4 0.9 1.6 1.6 1.6 1.4 1.6 1.0 1.4

CUDA from scratch (Ours) 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.8 0.8 0.8 0.7 0.7 0.8 0.8 0.8
H = W = 28

PyTorch/CuDNN Horiz. only 1.4 3.8
CUTLASS Horiz. only [8] 2.3 2.5

CUTLASS Rotated Filter (Ours) 3.1 5.3 6.2 6.0 6.2 5.1 2.5 5.1 3.1 6.8 7.8 7.6 7.8 6.6 2.7 6.4
CUTLASS Rotated Input (Ours) 3.3 5.7 5.7 5.9 5.6 5.7 4.0 5.2 3.5 6.1 6.0 6.2 5.9 6.0 4.2 5.5

CUDA from scratch (Ours) 0.9 0.9 0.9 0.9 1.0 0.9 0.9 0.9 2.6 2.6 2.6 2.6 2.5 2.6 2.6 2.6
H = W = 56

PyTorch/CuDNN Horiz. only 5.5 15.0
CUTLASS Horiz. only [8] 9.4 10.2

CUTLASS Rotated Filter (Ours) 13.4 49.6 61.7 60.4 61.8 52.9 14.8 46.1 13.6 66.1 85.3 81.5 86.0 70.3 17.7 60.3
CUTLASS Rotated Input (Ours) 13.3 22.4 22.7 23.4 21.6 22.6 15.6 20.7 14.1 24.1 24.4 24.7 23.1 24.3 16.6 22.2

CUDA from scratch (Ours) 3.2 3.3 3.2 3.2 3.2 3.2 3.2 3.2 9.8 9.8 9.8 9.9 9.9 9.9 10.0 10.0

Table 4: Full runtime comparison of the different oriented 1D convolution implementations on an NVIDIA RTX 3090 for
N = 64, C = 512, FP32. The mean is taken over 100 runs, preceded by 10 dry runs. We benchmark against the very
competitive CuDNN/PyTorch and CUTLASS implementations. Our CUDA from scratch outperforms consistently all other
implementations regardless of angle with intelligent data access patterns, but starts to fall off when computation becomes the
bottleneck. Our CUTLASS based methods either rotate the filter, which leads to non-contiguous/slow memory accesses; or
either rotate the input, which enable the use of the efficient horizontal CUTLASS kernel but introduce aliasing and grow the
image size HW up to 2×.

Implementation K Angle Inference Training
Time Time

PyTorch Horiz. 31 0◦ 5.2±0.1ms 14.9±0.3ms
CUTLASS Horiz. 31 0◦ 3.4±0.1ms 10.1±0.1ms
CUDA From Scratch 31 0◦ 4.2±0.1ms 9.9±0.1ms
CUDA From Scratch 31 45◦ 4.2±0.1ms 9.9±0.1ms
Rotated Filter 31 0◦ 5.4±0.1ms 13.6±0.1ms
Rotated Filter 31 45◦ 30.7±0.2ms 85.3±0.3ms
Rotated Input 31 0◦ 5.3±0.1ms 14.1±0.1ms
Rotated Input 31 45◦ 9.4±0.1ms 24.6±0.1ms
Rotated Compressed 31 0◦ 5.3±0.1ms 13.9±0.1ms
Rotated Compressed 31 45◦ 4.8±0.1ms 13.0±0.1ms

Table 5: Comparison of our different implementations, for N =
64, C = 512, H = W = 56 on an NVIDIA RTX 3090, PyTorch 1.11,
CUDA 11.3, CuDNN 8.2, FP32. We see that Rotated Compressed im-
proves performance for non-zero angles. Inference Time measures only
forward pass, Training Time includes backpropagation.

Model Inference Training
Throughput Throughput

ConvNeXt-B 460 140
ConvNeXt-1D-B 450 140
RepLKNet-B 340 90
ConvNeXt-1D++-B 290 105
ConvNeXt-2D++-B 290 100
SLaK-B 210 60

Table 6: Benchmark of ConvNeXt, RepLKNet and SLaK on a
32 × 2242 FP32 batch. Inference Throughput measures the num-
ber of images per second, forward pass only, Training Throughput
includes backpropagation.

Kernel K Inference time Train time
PyTorch 2D 31 × 31 110ms 410ms
PyTorch 1D 1 × 31 5.2ms 14.9ms
Ours 1D 1 × 31 4.2ms 14.7ms
PyTorch 2D 15 × 15 29ms 95ms
PyTorch 1D 1 × 15 3.4ms 8.7ms
Ours 1D 1 × 15 2.0ms 7.5ms
PyTorch 2D 7 × 7 8.2ms 22ms
PyTorch 1D 1 × 7 2.4ms 5.4ms
Ours 1D 1 × 7 1.0ms 4.2ms
PyTorch 2D 3 × 3 2.2ms 5.8ms
PyTorch 1D 1 × 3 2.0ms 4.0ms
Ours 1D 1 × 3 1.0ms 3.9ms

Table 7: Comparison between PyTorch 1D, 2D and our oriented
kernels on an input of batch size 64, C = 512 and H =W = 56,
FP32, measured on 1 NVIDIA RTX3090. We see that 1D ker-
nels are clearly faster than 2D kernels of same kernel size and that
our implementation is able to match PyTorch efficiency. Inference
measures forward pass, Training includes backpropagation.

10. Training Settings
10.1. Pre-training

In this section, we provide the full training settings used
in our experiments. We adapt them directly from ConvNeXt
[14]. All settings apart from stochastic depth rate are the
same for all model variants, as described in [14] and are
listed in Table 8.

10.2. Downstream tasks

For ADE20K and COCO experiments, we follow the
same settings as ConvNeXt, and use the same toolboxes
MMDetection [3] and MMSegmentation [6]. We also use
non-EMA weights. For COCO experiments, we train a Cas-
cade Mask-RCNN [11] network for 36 epochs, with a 3×

Setting ConvNeXt-1D/1D++/2D++
T/S/B

weight init trunc. normal (0.2)
optimizer AdamW
base learning rate 4e-3
weight decay 0.05
optimizer momentum β1, β2 = 0.9, 0.999
batch size 4096
training epochs 300
learning rate schedule cosine decay
warmup epochs 20
warmup schedule linear
layer-wise lr decay [1, 5] None
randaugment [7] (9, 0.5)
mixup [26] 0.8
cutmix [25] 1.0
random erasing [27] 0.25
label smoothing [20] 0.1
stochastic depth [10] 0.1/0.4/0.5
layer scale [21] 1e-6
head init scale [21] None
gradient clip None
exp. mov. avg. (EMA) [19] 0.9999

Table 8: ImageNet training settings. Input is of size 2242.
Settings taken from ConvNeXt [14]. Stochastic depth rates
0.1/0.4/0.5 are dependent on model size T/S/B.

schedule, a learning rate of 2e-4, a layer-wise l.r. decay of
0.7/0.8 and a stochastic depth rate of 0.4/0.7 for Tiny/Base
respectively. For ADE20K, we train a Upernet [24] net-
work, for 160k iterations, with a learning rate of 1e-4, layer-
wise l.r. decay of 0.9, stochastic depth rate of 0.4 and report
validation mIoU results using multi-scale testing.

11. Limitations and Future Work
As mentioned in previous sections, some aspects of ori-

ented 1D kernels deserve more exploration. This includes
looking at oriented non-depthwise convolutions, and doing
angle backpropagation. We have mae a lot of design choices
which constrain 1D kernels and their expressiveness. As
future work, we would like to relax these hypotheses and
come up with efficient implementations for more general
cases. In this paper, we have demonstrated that we can
expect measurable benefits by using oriented 1D kernels,
which shows how promising such an approach can be if ex-
plored further.

References
[1] Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. BEit:

BERT pre-training of image transformers. In International
Conference on Learning Representations, 2022. 9

[2] John Canny. A computational approach to edge detection.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, PAMI-8(6):679–698, 1986. 5

[3] Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu
Xiong, Xiaoxiao Li, Shuyang Sun, Wansen Feng, Ziwei Liu,
Jiarui Xu, Zheng Zhang, Dazhi Cheng, Chenchen Zhu, Tian-
heng Cheng, Qijie Zhao, Buyu Li, Xin Lu, Rui Zhu, Yue Wu,
Jifeng Dai, Jingdong Wang, Jianping Shi, Wanli Ouyang,
Chen Change Loy, and Dahua Lin. Mmdetection: Open mm-
lab detection toolbox and benchmark, 2019. 8

[4] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch,
Jonathan Cohen, John Tran, Bryan Catanzaro, and Evan
Shelhamer. cudnn: Efficient primitives for deep learning.
CoRR, abs/1410.0759, 2014. 7

[5] Kevin Clark, Minh-Thang Luong, Quoc V. Le, and Christo-
pher D. Manning. ELECTRA: Pre-training text encoders as
discriminators rather than generators. In ICLR, 2020. 9

[6] MMSegmentation contributors. Mmsegmentation: Open-
mmlab semantic segmentation toolbox and benchmark. 8

[7] Ekin D. Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V.
Le. Randaugment: Practical automated data augmentation
with a reduced search space. In 2020 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, CVPR
Workshops 2020, Seattle, WA, USA, June 14-19, 2020, pages
3008–3017. Computer Vision Foundation / IEEE, 2020. 9

[8] Xiaohan Ding, Xiangyu Zhang, Jungong Han, and Guiguang
Ding. Scaling up your kernels to 31x31: Revisiting large ker-
nel design in cnns. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 11963–11975, June 2022. 1, 6, 8

[9] J.-M. Geusebroek, A.W.M. Smeulders, and J. van de Weijer.
Fast anisotropic gauss filtering. IEEE Transactions on Image
Processing, 12(8):938–943, 2003. 6

[10] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kil-
ian Q. Weinberger. Deep Networks with Stochastic Depth.
In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling,
editors, Computer Vision – ECCV 2016, Lecture Notes in
Computer Science, pages 646–661, Cham, 2016. Springer
International Publishing. 9

[11] Durga Kumar and Xiaoling Zhang. Improving more in-
stance segmentation and better object detection in remote
sensing imagery based on cascade mask r-cnn. In 2021 IEEE
International Geoscience and Remote Sensing Symposium
IGARSS, pages 4672–4675, 2021. 8

[12] C.H. Lampert and O. Wirjadi. An optimal nonorthogo-
nal separation of the anisotropic gaussian convolution filter.
IEEE Transactions on Image Processing, 15(11):3501–3513,
2006. 6

[13] Shiwei Liu, Tianlong Chen, Xiaohan Chen, Xuxi Chen, Qiao
Xiao, Boqian Wu, Mykola Pechenizkiy, Decebal Mocanu,
and Zhangyang Wang. More convnets in the 2020s: Scal-
ing up kernels beyond 51x51 using sparsity. arXiv preprint
arXiv:2207.03620, 2022. 1

[14] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feicht-
enhofer, Trevor Darrell, and Saining Xie. A convnet for the
2020s. In 2022 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 11966–11976, 2022.
8, 9

[15] Wenjie Luo, Yujia Li, Raquel Urtasun, and Richard Zemel.
Understanding the effective receptive field in deep convolu-
tional neural networks. In D. Lee, M. Sugiyama, U. Luxburg,
I. Guyon, and R. Garnett, editors, Advances in Neural Infor-
mation Processing Systems, volume 29. Curran Associates,
Inc., 2016. 1

[16] Stefano Markidis, Steven Wei Der Chien, Erwin Laure,
Ivy Bo Peng, and Jeffrey S. Vetter. NVIDIA Tensor Core
Programmability, Performance & Precision. In 2018 IEEE
International Parallel and Distributed Processing Sympo-
sium Workshops (IPDPSW), pages 522–531, May 2018.
arXiv:1803.04014 [cs]. 6

[17] NVIDIA. CUTLASS: CUDA templates for linear algebra,
2022. 6

[18] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zem-
ing Lin, Natalia Gimelshein, Luca Antiga, Alban Desmai-
son, Andreas Köpf, Edward Z. Yang, Zachary DeVito, Mar-
tin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch:
An imperative style, high-performance deep learning library.
In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer,
Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett,
editors, Advances in Neural Information Processing Systems
32: Annual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, December 8-14, 2019, Van-
couver, BC, Canada, pages 8024–8035, 2019. 7

[19] B. T. Polyak and A. B. Juditsky. Acceleration of stochastic
approximation by averaging. SIAM Journal on Control and
Optimization, 30(4):838–855, 1992. 9

[20] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon
Shlens, and Zbigniew Wojna. Rethinking the Inception Ar-
chitecture for Computer Vision. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
2818–2826, June 2016. ISSN: 1063-6919. 9

[21] Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles,
Gabriel Synnaeve, and Hervé Jégou. Going deeper with im-
age transformers. In 2021 IEEE/CVF International Confer-
ence on Computer Vision (ICCV), pages 32–42, 2021. 9

[22] Ken Turkowski. Filters for common resampling tasks. In
Graphics gems, pages 147–165. Academic Press Profes-
sional, Inc., USA, 1990. 6

[23] Shuang Wu, Guanrui Wang, Pei Tang, Feng Chen, and Lup-
ing Shi. Convolution with even-sized kernels and symmetric
padding. In Advances in Neural Information Processing Sys-
tems, volume 32. Curran Associates, Inc., 2019. 4

[24] Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and
Jian Sun. Unified perceptual parsing for scene understand-
ing. In Vittorio Ferrari, Martial Hebert, Cristian Sminchis-
escu, and Yair Weiss, editors, Computer Vision – ECCV
2018, pages 432–448, Cham, 2018. Springer International
Publishing. 9

[25] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk
Chun, Junsuk Choe, and Youngjoon Yoo. CutMix: Regular-
ization Strategy to Train Strong Classifiers With Localizable
Features. pages 6023–6032, 2019. 9

[26] Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and
David Lopez-Paz. mixup: Beyond empirical risk minimiza-
tion. In 6th International Conference on Learning Represen-
tations, ICLR 2018, Vancouver, BC, Canada, April 30 - May
3, 2018, Conference Track Proceedings. OpenReview.net,
2018. 9

[27] Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and
Yi Yang. Random erasing data augmentation. In The Thirty-
Fourth AAAI Conference on Artificial Intelligence, AAAI
2020, The Thirty-Second Innovative Applications of Artifi-
cial Intelligence Conference, IAAI 2020, The Tenth AAAI
Symposium on Educational Advances in Artificial Intelli-
gence, EAAI 2020, New York, NY, USA, February 7-12, 2020,
pages 13001–13008. AAAI Press, 2020. 9

