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Cam Mean Std Mean Std
Config (x,z) (x,z) Yaw Yaw
1 (−4.6, 79.2) (10.0, 1.9) -15.7 39.8
2 (−8.3, 78.3)

(4.6, 77.7)
(7.8, 2.7)
(9.1, 3.2)

-3.6
8.8

43.3
43.7

3 (−10.4, 77.8)
(−1.1, 77.6)
(8.5, 77.3)

(6.4, 2.9)
(8.6, 3.1)
(7.2, 3.3)

-0.6
9.3
15.4

43.7
43.1
41.2

4 (−11.4, 77.7)
(−4.3, 77.6)
(3.5, 77.2)
(10.9, 77.4)

(5.4, 3.0)
(7.5, 3.2)
(7.5, 3.2)
(5.5, 3.2)

3.2
11.4
15.1
17.0

45.1
43.5
41.7
40.7

5 (−12.1, 77.7)
(−6.5, 77.9)
(−0.17, 77.4)
(6.6, 77.1)
(12.2, 77.2)

(4.6, 3.1)
(6.7, 3.0)
(7.3, 3.3)
(6.8, 3.4)
(4.5, 3.3)

5.4
8.0
14.0
17.9
18.7

43.4
44.2
41.5
41.7
40.5

Table 1: Distribution CD Actions: We show the mean
and standard deviation of the actions taken by the CD af-
ter training. The CD always chooses to place a camera in
the back of the allowed region (green box in Fig. 4) while
spreading the rest of the cameras across the x-axis (mean
x-position cover the entire box). For instance, the largest
baseline between 3,4 and 5 cameras are roughly the same
as the CD maximizes the spread of cameras along the x-
axis while minimizing the z-axis variation. Additionally,
the yaw has the largest variance of the parameters, which
suggests that the CD has learned a strategy that exploits
the yaw to find the object instead of the position.

1. Additional Results

We provide additional experimental results and de-
tails below. We refer to the camera designer as CD and
perception model as PM.

1.1. Depth Estimation

We show that the CD and PM are able to learn intu-
itions that hold true in conventional multi-view stereo.
We evaluate the individual components, the CD and
PM, in isolation in Fig. 5 of the main paper. We now
discuss additional results by analyzing the distribution
of actions taken by CD, and the results from supervised

Coverage L1 Loss
0 14.0
1 9.2
2 7.2
3 5.7

Table 2: We show that the L1 loss consistently decreases
as more cameras see the sphere.

training of the PM.
Distribution of Actions: Table 1 shows the mean

and standard deviations (std) over 7,000 trials for ac-
tions taken by the CD based on the final camera config-
uration (number of cameras) at the end of the episode.
We notice that regardless of the camera configuration,
the CD almost always chooses to place the camera at
the back of the allowed region, maximizing distance to
the scene, and thus allowing more of it in its field of
view. It maximizes z-position (max: 80) and has a very
small std. The mean x-position of the camera is always
maximized. For example, the largest baseline between
the furthest cameras for camera configurations with 3,
4, and 5 cameras is roughly the same. For the 2 camera-
configuration, the left camera is placed at -8.3, and the
right camera is placed at 4.6 which is not as wide as
it could be. The mean yaw of this configuration shows
that on average the cameras face opposing directions:
−3.6◦ for left camera, and +8.8◦ for right. Moreover,
the x-position std is high for the right camera so the
limited baseline could be due to the narrow FoV (45◦).

We also note the distribution of yaw angles in the
camera configurations. In the 2-camera configuration,
the yaw angles oppose each other and, as the CD adds
more cameras, the yaw of the left-most camera reduces
to 0◦ while the right ones have a yaw 15◦ to the right.
Lastly, we note that the yaw angles have the highest
std when compared to the x and z positions’ std, which
suggests that the CD might have learned to fix the
cameras around a certain area and rather exploit the
yaw, range of [−60,60], to find the object.

Supervised Learning: To verify if the PM can
indeed learn to estimate accurate depth with stereo,
rather than monocular, cues in our environment, we
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conduct a supervised experiment. We first create two
datasets, monocular and stereo, by randomly sampling
the sphere from the same region described in Section
4.1.1 of the main text. For each sampled sphere, we
sample a random position directly in-front of the sphere
and place a monocular camera looking at the object.
We also randomly sample two cameras a random dis-
tance apart (such that the sphere is visible to both
the cameras). The two images from two cameras form
the stereo pair for the two camera-configuration setup.
We sample 7,500 training samples and then train two
PMs in a supervised fashion (same architecture): one
network on the one camera-configuration dataset and
another on the two camera-configuration dataset.

We show plots in Figure 1 of the training loss and
baseline experiments. We show that PM model jointly
trained with the CD, shown in the main text, achieves
similar results as the supervised model. Specifically,
Fig. 1.a shows that the training loss for the two camera-
configuration PM is substantially lower, verifying that
the lack of monocular cues in our environment enable
the stereo setup to achieve more accurate depth esti-
mation. Moreover, on the test sets, the stereo setup
outperformed monocular with a test L1 loss of 3.78 vs.
5.40 respectively. In Fig. 1.b, we perform the baseline
experiment, described in Sec.4.1.2 of the main text.
We show that the behavior of the PM is similar to the
joint training setup from the main text i.e. the PM
model trained with stereo setup estimates more accu-
rate depth and has lower variance than the monocular
setup- which is subject to size of sphere and position
of the camera w.r.t sphere. However, the primary dif-
ference between the experiments is that the only the
number of cameras, not the baseline between the cam-
eras, has an effect on the L1 error in the supervised
settings.

1.2. AV Camera Rig Design

An overview of our method for autonomous vehicle
(AV) camera rig design is shown in Fig. 2, using the
same steps shown in Fig. 2 of the main text.
Mean & Std. Training Rewards: We repeat Expt.
a and b three times and report the mean and standard
deviation (std.) in Fig. 4. The mean and std. for
Expt. c is in Fig. 5.

Expt. b: We include additional examples of candi-
date rig designs generated from the trained CD in Fig.
3. While the FoV and yaw of the cameras vary be-
tween candidate camera rigs, we note that the pitch
and height are always −20◦ and 0.5 m above the roof,
respectively. We also visualize the BEV segmentation
predictions of two Cross View Transformer (CVT) [6]
models - one trained with our selected camera rig and

Figure 1: Learning Stereo Cues with Supervised
Learning: We train two PMs – one on a one camera con-
figuration and one on a two camera configuration. We show
that PM trained with a two camera configuration outper-
forms the one trained with one camera both during training
and when evaluated on the same test set (5.40 vs. 3.78).
This result verifies that the lack of monocular cues in our
environment enable stereo setup to better estimate depth.
In (b) we perform the baseline experiment (described in the
main text) on the supervised models and show that the PM
model trained in conjunction with the CD shows similar be-
havior of lower overall depth error and variance with the 2
camera setup.

one trained with the nuScenes camera rig. Visualiza-
tions are shown in Fig. 6; predictions are not thresh-
olded and thus intensity indicates model confidence.
These visualizations correspond to the models evalu-
ated in Table 1 of the main text. When looking at the
predictions, we observe that the model trained with
our selected camera rig has higher confidence than the
model trained on the nuScenes rig, suggesting that the
CD has learned to place the cameras in such a way that
maximizes BEV segmentation prediction confidence.

Expt. c: In expt. c, we train the CD and PM to
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Figure 2: AV Camera Rig Design Method: Detailed visualization of our method for designing camera rigs, using the
same steps shown in Fig. 2 of the main text. First, the CD proposes a candidate camera rig and data is collected from that
rig in CARLA [1]. Then the data is added the perception buffer, which is used to train the PM. The PM computes the
reward, which is used to update the CD.

Figure 3: Camera Rig Candidates: Above are ten example candidate camera rigs generated by the learned CD as part
of the CD evaluation for expt. b explained in the main text. While yaw and FoV vary between camera rigs, the pitch and
height of each camera are consistently −20◦ and 0.5 m above the roof, respectively.

create a camera rig that minimizes the number of cam-
eras used while maximizing BEV segmentation accu-
racy. For this experiment, the CARLA environment is
modified to only include vehicles in front of the ego-
vehicle, between yaw angles -45◦and 45◦, incentivizing
the CD to place cameras facing forward. We addition-
ally place two penalties on camera placement to encour-
age a resource-constrained camera rig to be created.
The first penalty of 0.025 is subtracted from overall
reward when any additional cameras are placed. The
second penalty subtracted from the overall reward is
maximized at a value of 0.3 when an additional cam-

era placed has the same yaw as an existing camera,
and minimized at a value of 0 when the yaw difference
between the selected camera and the closest existing
camera is maximized.

We demonstrate in the main paper that under this
resource-constrained, task-specific environment, the se-
lected camera rig that is learned by the CD places only
two cameras, both facing forward. Shown in Fig. 5
is the reward curve for this experiment. In this fig-
ure, we observe that, as in expts. a and b, the CD is
able to learn a policy that improves rewards over time.
The maximum reward in this experiment is lower than
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Figure 4: Results for AV Camera Rig Co-Design:
Reward curves for experiments a and b, including mean and
standard deviation (std) for our method (blue line is frozen
PM and green line is jointly trained PM). Mean and std are
computed over three trials.

Figure 5: Constrained AV Camera Rig: Shown is the
reward curve for Expt. c, where the camera designer (CD)
and perception model (PM) are jointly trained to create a
resource-constrained camera rig. A penalty is added each
time a new camera is added to disincentivize the CD from
placing unnecessary cameras. The environment is modified
to only contain cameras in front of the ego-vehicle.

in expts. a and b because of the resource-constraint
penalty subtracted from it. We find that by varying the
maximum penalty magnitudes, the CD balances IoU in
the BEV segmentation task with sufficiently disincen-
tivizing adding extra cameras.

2. Implementation Details

All code was developed in PyTorch [3] and trained
using the Adam optimizer [2]. Code is available from
our project page.

2.1. Proximal Policy Optimization

We use proximal policy optimization (PPO) [5] to
train the camera designer (CD). In PPO, a policy, πk, is
trained to predict actions that maximize the sum of re-

wards over time. A value function is trained to predict
the advantage of each action, where advantage is the
improvement in using the policy’s actions compared to
random actions. We use the PPO-Clip variant, which
disincentivizes the policy from becoming too different
from old versions of the policy during training by clip-
ping the probability ratio term to be in [1 − ϵ, 1 + ϵ].
where ϵ is a hyper-parameter. The policy, πk, is then
updated via the following rule:

πk+1 =θ E
s,a∼πk

[L(s,a,θk,θ] (1)

We use the Stable Baselines3 implementation of
PPO [4].

2.2. Depth Estimation

We use a perception buffer size of 35 when jointly
training the CD and the PM. At each step of the roll-
out the loss and the reward is calculated and the PM
is trained on the entire dataset for 2 epochs. The ar-
chitecture is a custom Video ViT network which also
inputs a flattened camera matrix per image. All the im-
ages and canera matrices, regardless of the number of
cameras placed by the CD are, passed into the encoder,
which outputs a constant feature vector of size 512 and
64 respectively. The feature vectors are concatenated
and passed through a classification head that outputs
the depth. We train the PPO in parallel with 5 pro-
cesses with batch size of 128 and n. steps of 256. The
input images are of fixed size (128,128). All actions are
predicted in the range of [−1, 1] and then rescaled to
their corresponding range described in the main text.
The reward is also re-scaled to [−1, 1] where a reward
of 1 is given with 0 error and -1 is given when the L1 er-
ror between predicted and ground truth depth is equal
to, or greater than, the ground truth depth.

2.3. AV Camera Rig Design

We use a perception buffer size of six when train-
ing the CD and PM together, meaning that, at every
step, the PM is trained with data from the 6 most re-
cent episodes. The PM is trained for two epochs per
step. The Cross View Transformers (CVT) model used
as the PM is first pre-trained for 40 epochs on 25,000
training samples from random camera rigs. the PM is
then jointly trained with the CD. During joint train-
ing, we use a learning rate of 4e − 4 for the PM. In
all AV rig design experiments, we use the following hy-
perparameters to train PPO: learning rate=0.0003, n.
steps=18, batch size=6, n. epochs=10, gamma=0.99,
gae lambda=0.95, clip range=0.2. We parallelize PPO
across two processes to reduce training time. All
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Figure 6: BEV Segmentation Predictions: Visualizations of the predictions made by a BEV segmentation model
trained with data from the nuScenes rig (left) compared to our CD-optimized rig (right) on the same test scene. We observe
that, on the same scenes, predictions from our rig are, in general, more accurate and have higher confidence.

actions are predicted in the range [−1, 1] and then
rescaled to their corresponding range described in the
main text. Image resolution is fixed to (400,224) in all
experiments.
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