
Supplementary Material
Towards Viewpoint Robustness in Bird’s Eye View Segmentation

1. Synthetic Datasets

One of the contributions of our paper is the release of
two datasets. The datasets are made available through
our project page.

Dataset #1: The first dataset, rendered in
CARLA [2] can be used to analyze the impact of cam-
era viewpoint changes without any other domain gaps.
This dataset includes 36 train and test datasets: 1
source rig dataset (using the nuScenes [1] rig), 10 yaw
datasets, 10 pitch datasets, 10 height datasets, and 5
pitch and height together datasets. We randomize the
weather conditions in each scene, rendering 100 images
from 2,500 scenes per dataset. The total number of
images is 1.8 million (half are train images and half are
test images). While we provide 25,000 images in each
test dataset, we only tested with 5,000 in our experi-
ments. The datasets contain 3D bounding box labels
that can be used for tasks, such as BEV segmenta-
tion or 3D object detection. More example images are
shown in Fig. 1.

Dataset #2: The second dataset, rendered with
NVIDIA DRIVE Sim [4], can be used to evaluate
the viewpoint robustness of BEV segmentation models
trained on real data. The reason we create a separate
dataset for this is because the domain gap between real
to CARLA is much more significant than the domain
gap between real data to DRIVE Sim data, despite it
still being synthetic. We note that the DRIVE Sim
data comes from an F-theta lens camera and we rec-
tify it prior to evaluation. Because the real data we use
to train our model comes from a source rig that may
be different than what others will use in the future,
we provide test datasets that cover a range of pitches
and heights, such that there is sufficient diversity for
other researchers to evaluate the viewpoint robustness,
as long as their source rig does not deviate significantly
from ours. Our source rig is from a standard sized
sedan vehicle, which is typical across the AV industry.

The dataset includes the following test subsets:
source rig, +0.2 m height, +0.4 m height, +0.6 m
height, +0.8 m height, -5 pitch◦, -10 pitch◦, +5 pitch◦,

+10 pitch◦, +0.6 m height and -10 pitch◦ together, and
+1.5 m depth. Each test subset contains at least 1,800
images and includes 3D bounding box labels for BEV
segmentation or 3D object detection. Fig. 2 provides
more examples of images from this dataset.

2. Method Details

2.1. Novel View Synthesis Training

We provide training details of our adapted World-
sheet method. Our total loss is defined as the combi-
nation of image L1 loss Ll1

im, image SSIM loss Lssim
im ,

direct lidar depth loss Ldirect
D , re-rendered lidar depth

loss Lrerendered
D , and the regularization term Lreg:

L = λ1L
l1
im+λ2L

ssim
im +λ3L

direct
D +λ4L

rerendered
D +λ5Lreg

(1)

where we set the weights(5 λ) to be 1.5, 8.5, 10, 10,
0.01, respectively. We apply the same Laplacian regu-
lation terms as Worldsheet [3], but use smaller weights
since drivng scenes are more complex. The model is
trained on a 16GB cloud computing GPU card and it
converges in 20K iterations.

2.2. Baseline: Extrinsic Augmentations

Our two baselines are (1) passing in train extrin-
sics at test time, and (2) extrinsic augmentations. In
this section, we describe the extrinsic augmentations
in more detail and provide intuition. The key idea is
that, rather than improve the robustness of the BEV
segmentation encoder and decoder to different view-
points, improve the robustness of only the decoder. In
BEV segmentation, typically, the encoder maps images
to features, the features are transformed based on the
extrinsic and intrinsic parameters of the camera, and
the decoder maps the transformed features to BEV
segmentation maps. While it is challenging to warp
images from one view to another and maintain pho-
torealism, augmenting the extrinsics is straightforward
and can improve model robustness on its own by expos-
ing the decoder to different transformations of the fea-
tures. To train this baseline, we use the training images
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Figure 1: Dataset # 1 - Example Images from CARLA: We render data across camera viewpoints using CARLA [2].
The data can be used to train and evaluate models for viewpoint robustness in isolation of other domain gaps.

Figure 2: Dataset # 2 - Example Images from NVIDIA DRIVE Sim: We render data across camera viewpoints
using NVIDIA DRIVE Sim [4]. The data can be used to evaluate models trained on real-world data for viewpoint robustness.

from the source view, but change the extrinsic param- eters that are used to transform the features. In Cross
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Figure 3: Qualitative Comparison of Model Predictions: We compare the predictions of the source model (CVT
trained on data from the source rig) and our model (trained on a mixture of data from the source rig and data transformed
to the viewpoint of the target rig). Both models are evaluated on a target rig with pitch of -5◦.

View Transformers (CVT) [5], this transformation is an
affine transformation between the image features and
an embedding created from the extrinsic parameters.
We randomly perturb the extrinsic parameters within
the range of the camera on the source rig and the tar-
get rig during training. In addition, to ensure that the
extrinsics and ground truth are in the same coordinate
frame, we also transform the ground truth 3D bounding
box labels accordingly. As a result, during training, the
extrinsics vary within a range, exposing the decoder to
many different extrinsic parameters. We observe these

extrinsic augmentations signicantly improve the abil-
ity for the BEV segmentation model to then general-
ize to the target rig, but do not work as well as our
proposed approach, which augments the encoder and
decoder using novel view synthesis. This observation
indicates that the drop in performance when BEV seg-
mentation models are exposed to different viewpoints
is a result in a lack of generalization in both the image
encoder and feature decoder.
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IoU (Real) IoU (Sim)
CVT 0.245 0.170

Table 1: Real-to-Sim Gap: In our experiments, we train
on real data and evaluate on simulated data (see Fig. 2).
Shown above is the domain gap. Because our goal is relative
performance with vs. without our method, not absolute
performance, the domain gap introduced by evaluating with
synthetic data is acceptable.

Train Pitch Test Pitch E/I? IoU
0,-10 -5 I 0.149
0,-5 -10 E 0.153
0,5 -5 E 0.144
0,5 -10 E 0.147

Table 2: Interpolation & Extrapolation: We test
models trained on two different viewpoints (the source rig
viewpoint and data transformed to a target rig viewpoint)
on viewpoints in between the two (interpolation) or beyond
the two (extrapolation). Shown above are the results for
pitch.

3. Results

3.1. Visualizations

In the main text, we provide quantitative compar-
isons of a CVT model trained on data from only the
source rig and evaluated on many target rigs compared
to models trained with our approach and evaluated
on the corresponding target rig. In Fig. 3, we pro-
vide qualitative comparisons of the predictions between
these two models. In general, we see that the model
trained with our approach (of incorporating data trans-
formed into the viewpoint of the target rig into the
training dataset) have more true positive pixels and
fewer false positive. A consistent trend we notice across
models trained only on data from the source rig is that,
when evaluated on data from other rigs, they tend to
hallucinate vehicles near the ego-vehicle, which are not
there, as seen in several of the examples in Fig. 3. We
also notice higher confidence predictions (indicated by
the intensity of the blue in Fig. 3) with our approach.

3.2. Sim-to-Real Gap

In our experiments, we train on real data and eval-
uate on simulated data (see Fig. 2). Table 1 shows
the domain gap of 7.5%. However, we note that the
average number of ground truth objects between the
real and sim test datasets differ, with the real test
dataset containing 3 more objects per image on av-
erage. We note that this difference can skew the IoU
because there is more opportunity to have true positive

predictions when evaluating on a dataset with more
positive pixels. When evaluated on a real dataset with
the same average number of objects, we found the per-
formance was 0.19%, dropping the domain gap to just
2%. Thus, we note two observations: (1) the low BEV
segmentation accuracy in our experiments, even in the
oracle (0.17%), is a result of very few and far away
objects in most images of our test datasets, thus mak-
ing BEV segmentation very challenging, and (2) the
domain gap is between 2-7%. Because our goal is rel-
ative performance with vs. without our method, not
absolute performance, the domain gap introduced by
evaluating with synthetic data is acceptable.

3.3. Interpolation and Extrapolation

As discussed in the main text, the primary focus
of our paper is introducing a method to create target
rig specific BEV segmentation models without addi-
tional data collection or labeling costs. However, we
also study whether our training strategy, which in-
volves training with both real data from the source
rig and transformed data from the viewpoint of the
target rig, allows models to better generalize across
target rigs. Initial results are promising, as shown in
Table 2. We see that the performance of the model
when tested on viewpoints between the two training
viewpoints (interpolation) and beyond the two view-
points (extrapolation) is significantly better than the
model only trained on data from the source rig. In
this ablation, we only test on changes to pitch. Results
are summarized in the main text and more details are
provided in Table 2, where I/E specifies whether it is
interpolation or extrapolation, respectively.
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