
A. Additional Results on WSA [Section 5.2]
In this section, we additionally present the accuracy

metric obtained from trained attack models in Table 5.
Given that it is infeasible to compute the accuracy values
from CSA and AEA, we opted to showcase the AUC and
TPR@1%FPR in the main paper to ensure a fair compari-
son between the three approaches. Nevertheless, as a crucial
design preference, it may be imperative to take into account
the balanced scenarios between the true negative and true
positive cases. Therefore, we furnish the outcomes in terms
of accuracy and provide an explanation of the true negative
and true positive analyses in Appendix C.

Table 5. WSA performance in terms of accuracy obtained from
attack models.

Method WSA

Dataset Model ACC

ViTi-B/32 0.7845 ± 0.0122

LAION ViTi-B/16 0.7996 ± 0.0062

ViTi-L/14 0.8078 ± 0.0100

RN50 0.6978 ± 0.0050

CC12M RN101 0.7140 ± 0.0163

ViT-B/32 0.7005 ± 0.0022

B. Additional Results and Analysis on AEA
[Section 5.2]

We additionally present AEA results on different mod-
els trained with different datasets (e.g., RN101, ViT-B/32
with CC12M and ViT-B/32, ViT-L/14 with LAION) in Fig-
ure 6. As shown in the figure, AEA surpasses CSA in all
models trained with different datasets in terms of AUC and
TPR@1%FPR.

Regarding the performance of AEA, we observe that on
the pre-trained models trained with LAION, AEA exhibits
the best performance with rotation and the worst perfor-
mance with colorjitter. By contrast, for the RN50, and
RN101 trained with CC12M, AEA performs best or second
best with colorjitter and Masked Autoencoder (MAE) aug-
mentations, except for the combined augmentation. These
results suggest that pre-trained models with the LAION
dataset (e.g., LAION ViT-B/16, ViT-B/32, and ViT-L/14)
show robustness towards colorjitter, but are weak to rotation
changes, while self-trained models with CC12M exhibit a
weakness towards MAE and colorjitter.

C. Sensitivity Analysis on |Dno| and mislabel
ratio [Section 5.3]

In-depth Analysis on the Impact of |Dno|. Attack per-
formance in terms of ACC increases until |Dno| = 70K and

decreases. The reason is that mere expansion of the size
leads to including more noisy samples without providing
useful alignment information between samples, which leads
to a decrease in performance. Furthermore, regardless of
the size of non-training data, our proposed method, WSA,
consistently outperforms the baseline for both datasets and
two different models.

In-depth Analysis on the Impact of Mislabeling Ratio.
A comprehensive analysis of the results from Table 2 may
raise the question of why TPR@1%FPR sometimes shows
better performance with lower accuracy. For example, for
the LAION ViT-L/14 pre-trained model, TPR@1%FPR is
0.7178 when λ = −1.5, but TPR@1%FPR drops to 0.6668
with higher attack model accuracy (i.e., 0.8199). Therefore,
we provide analysis regarding the performance increase in
terms of the TPR@1%FPR at the low threshold value even
with the high mislabeled ratio. As depicted in Figure 7, se-
lecting a lower threshold value (i.e., λ = −1.5) results in
a less number of non-member samples at high confidence
values (e.g., 2036 → 1613). This, in turn, leads to an in-
crease in the number of true positive (TP) cases as described
in the confusion matrices (e.g., 18121 → 18814). However,
this advantage comes at the cost of sacrificing true negative
(TN) simultaneously (e.g., 13423 → 10632). It becomes
more challenging to correctly classify non-members, thus
lowering the ACC score. In addition, as presented in the
table, the baseline approach fails to achieve high accuracy
even though it achieves relatively high TPR@1%FPR. In
case attackers prioritize TPR@1%FPR, they may opt for
a lower threshold. In sum, WSA provides superior perfor-
mance, compared to CSA, for any threshold selection. Nev-
ertheless, by carefully selecting λ, we can achieve a more
balanced performance.

D. Additional Results on Defenses [Section 6]

In this section, we further present the defense results ob-
tained from the RN50 models with data augmentation and
L2 regularization. Even though [6] provides the pre-trained
RN50 model on CC12M, to fairly compare the results, we
train three RN50 models from scratch on CC12M (i.e., a
model without defense, a model with DA, a model with
L2 regularization). We use similar hyperparameter settings
provided in the original paper. In particular, we set the num-
ber of epochs to 30, a learning rate to 1e − 3, and a weight
decay for DA and original models to 1e − 1. The zero-
shot accuracy on ImageNet is near 31% for the self-trained
original RN50 model, and the accuracy from the pre-trained
model is around 35%. The defense results are summarized
in Table 7.



Figure 6. AEA results on ViT-B/32 and ViT-L/14 trained with LAION and ViT-B/32 and RN101 trained with CC12M.

Table 6. WSA performance and the size of non-member data changes on LAION ViT-B/32 trained with LAION and RN50 trained with
CC12M. When we set the non-member size as 70K, we can achieve the top-2 performance in three spots (i.e., TPR@1%FPR, ACC on
LAION, and TPR@1%FPR on CC12M). However, even in case when the non-member samples are limited in size, WSA outperforms
CSA.

Dataset [Model] LAION [ViT-B-32] CC12M [RN50]

Method CSA WSA CSA WSA

Knowledge level AUC TPR@1%FPR AUC TPR@1%FPR ACC AUC TPR@1%FPR AUC TPR@1%FPR ACC

10K 0.7439 0.06556 0.8841 0.5852 0.7691 0.6854 0.0366 0.7931 0.3123 0.6757

30K 0.7439 0.06556 0.9024 0.6501 0.8081 0.6854 0.0366 0.7860 0.2733 0.6966

50K 0.7439 0.06556 0.9102 0.6811 0.7842 0.6854 0.0366 0.7925 0.2944 0.6948

70K 0.7439 0.06556 0.9216 0.7337 0.8011 0.6854 0.0366 0.7855 0.3143 0.6910

90K 0.7439 0.06556 0.9074 0.6974 0.7725 0.6854 0.0366 0.7894 0.3444 0.6928

Table 7. Attack performance mitigation according to L2 regularization and data augmentation on RN50 model trained with CC12M.

RN50 Self-trained Model L2 [α = 0.001] DA

Metric AUC TPR@1%FPR ACC Zeroshot AUC TPR@1%FPR ACC Zeroshot AUC TPR@1%FPR ACC Zeroshot

CSA 0.7861 0.0322 - 0.6770 0.0363 - 0.7835 0.0391 -

AEA 0.8103 0.1218 - 0.3100 0.7037 0.0965 - 0.1366 0.8058 0.1058 - 0.3217

WSA 0.8839 0.4587 0.7813 0.7919 0.3446 0.6989 0.8758 0.4320 0.7719

L2 Regularization As described in Table 7, similar to re-
sults from Section 6, we find that L2 regularization is effec-
tive to curtail the attack performance in terms of all metrics.
In particular, the AUC score for WSA drops from 0.8839 to
0.7919 and the TPR@1%FPR also exhibits a decrease from
0.4587 to 0.3446. Similarly, the AEA is mitigated (e.g.,
the decrease in AUC score by 0.1066 and TPR@1%FPR by
0.0253). However, this attack mitigation comes at a cost of
utility degradation (i.e., zeroshot performance).

Data Augmentation Our findings suggest that Data Aug-
mentation (DA) is still capable of providing effective de-
fense results while simultaneously improving utility for the
RN50 model. However, the degree of attack mitigation
achieved is insignificant. Specifically, DA results in a slight
increase of 0.0117 in the zero-shot performance, while
simultaneously resulting in a decrease in AUC score by
0.0081 and TPR@1%FPR by 0.0267 for WSA. Moreover,
DA decreases the AUC score by 0.0045 and TPR@1%FPR
by 0.016.

Differential Privacy In this section, we continue our dis-
cussion in Section 6. Since the batch-normalization layer
cannot provide the privacy guarantee, we simply replace the
corresponding layers with the layers suggested by [38] and
show the loss on each epoch during training in Figure 8.

As depicted in the figure, it is apparent that the modified
model, which is obtained by replacing the layers without
incorporating the DP algorithm (e.g., adding noise, and gra-
dient clipping), fails to attain loss convergence. Conversely,
the original model from [6] yields the loss convergence.
In this experiment, we leverage 600K image and text pairs
on the RN50 vision encoder. We note that after the third
epoch, the loss for the DP model goes to Nan. Therefore, it
is necessary to investigate how to properly incorporate the
DP algorithm into large-scale multi-modal training in future
work.

E. Data Processing [Section 5.1]

As described in the main paper, since most of the data
samples are scraped from the Internet, there is an overlap



Figure 7. Confusion matrix and histogram of prediction score
analysis according to the different mislabel ratios. The confu-
sion matrix serves to explicate the rationale underlying the ob-
served decrease in accuracy scores, while concurrently elucidat-
ing the possibility of increased AUC scores through the augmen-
tation of mislabeled data samples. Specifically, setting the thresh-
old at λ = −1.5 leads to a marginal increase in the number of
true positive (TP) cases, while concurrently causing a significant
decrease in the number of true negative (TN) cases. These obser-
vations are consistent with the histogram plot, which demonstrates
a gradual increase in the probability estimate of positive class on
non-member samples (λ = −1.5) while decreasing the number of
orange samples in the blue bar.

Figure 8. Loss convergence according to the original model and
modified model (i.e., a model obtained from [38]).

between datasets. To consider Dno and separate Dattack from
Deval for the attack model, it is important to check the over-
lapping pairs between datasets.

In this experiment, we adopt commonly used text pre-
processing steps: 1) remove spacing, 2) lowering, 3) remove
numbers, 4) remove punctuation, and 5) remove stopwords.
After processing all captions, we exclude the common pairs

between considered sets to meet Dno∪Dtrn = ∅ and Dattack∪
Deval = ∅. We additionally check the URL overlap for the
images.


