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Disposable Transfer Learning for Source Task Unlearning

A. Experimental configurations
In this paper, we set different learning rates, the number

of epochs, batch sizes, and the number of GPU processes
for each training step.

Optimization We used cross-entropy loss for learn-
ing. For optimization, we used the SGD optimizer with
weight decay=1e-4 and momentum=0.9. The learn-
ing rate is scheduled by a cosine annealing scheme with the
initial learning rate η0 described in the following paragraph.

Hyperparameters In pre-training of TL and knowl-
edge disposal, we set the initial learning rate to η0 = 0.05
for training 90 epochs with 4 GPUs. Because those stages
are trained with the full size of the source dataset, it is ac-
ceptable to use larger batch size and more GPUs for faster
training. Especially, for GC loss, we divide each mini-batch
into c = 4 chunks so that each GPU calculates for a chunk.
In fine-tuning of TL and piggyback learning (PL), the model
is trained with an initial learning rate of η0 = 0.01 for train-
ing 30 epochs with two GPUs. We reduced the batch size
because the scale of training data is much smaller, but we
matched the number of batches per GPU to 32.

For the TinyImageNet experiments, the dataset was
downsampled to a resolution of 36 × 36 and random-
cropped to 32 × 32 to be consistent with the input layer
used for the CIFAR dataset, our target task. For pre-training
source task, we used a batch size of 64, running on two
GPUs, with an initial learning rate of 0.05 and trained over
90 epochs. For training target task, we employed a batch
size of 32 across two GPUs with an initial learning rate of
0.01 and trained over 30 epochs. For the knowledge dis-
posal stage, the settings were consistent with the experi-
ments using CIFAR-100 as the source task: a batch size
of 128, utilizing four GPUs, with an initial learning rate of
0.05. Concerning piggyback learning, the TinyImageNet
piggyback was trained using the same setting as the knowl-
edge disposal stage, whereas other datasets were piggy-
backed with a batch size of 128, using two GPUs, over 30
epochs, with a learning rate of 0.01.

Classification layers We assign classification layers
per task which are linear layers that take the extracted fea-
tures from the shared feature network, so the classification
layer is independent between the preceding and the pro-

Experiment RAND UNIF NEG GC

CIFAR-100 DTL−−−→CIFAR-10-1% 0.9000 0.9000 0.9750 0.3000
CIFAR-100 DTL−−−→STL-10-10% 0.6000 0.8500 0.9900 0.2600

TinyImageNet DTL−−−→CIFAR-100-10% 0.8750 0.9700 0.9875 0.2600

Table 5: λ values used for the experiments.

ceeding tasks.

B. Details on the baseline methods
In the case of RAND, UNIF, NEG, and GC models, we

set the best model with different values of λ for each un-
learning loss in each experiment as in Table 5.

In addition, two additional baselines are reported in this
material. The PRE and TGT model behaves similarly to
the TL and TGT model, respectively. First, we estimated
the PRE model, the output model of pre-training in TL. The
PRE model is estimated to analyze the effect of pre-training
and to compare the performance with the TL model. Like-
wise, we analyzed the SCR model, which is a randomly
initialized model without any training. The TGT model
is more suitable for comparing the performance gain with
other unlearned models than the SCR model because the
TGT model has sufficiently low target performance and it
has little target knowledge.

C. Discussions on the DTL objective functions
C.1. Modified A-GEM for knowledge retaining

In Section 4.6 and Figure 6b, we compared the DTL per-
formance of various retaining losses. Among them, TGT-
A-GEM is a modified knowledge-retaining method based
on the A-GEM method [1, 4] for continual learning. It pre-
vents catastrophic forgetting of previous tasks by updating
the gradient of the current task in a direction so as not to
increase the loss of the previous tasks.

Drawing inspiration from the mechanism, we adopt the
A-GEM algorithm to effectively retain the target knowl-
edge. To prevent catastrophic forgetting of the target task,
we added the constraint to our optimizing goal, Equa-



tion (1), as below. θt refers to the parameter state after t-th
gradient descent update.

minimize Ldtl(θ
t) (15)

subject to Llearn(θ
t) ≤ Llearn(θ

t−1) (16)

Equation (16) indicates the knowledge retaining loss has to
be non-increasing as θt is updated by SGD, which implies
learning the target data Dt not to be restrained by unlearning
the source data Ds. The difference between the original
A-GEM algorithm and our TGT-A-GEM is the object of
knowledge retaining and the kind of minimizing objective.
In continual learning, the loss on previous tasks has to be
non-increasing, but in our study, the loss on retaining data
has to be non-increasing. Also, we minimize Ldtl, a linearly
interpolated loss, but A-GEM minimizes a single kind of
loss calculated from the current task.

From now on, we follow Equation (4) in [4] to obtain
the gradient update formula. We rephrase Equations (15)
and (16) with respect to ∇L.

minimize∇L̃
1

2
∥∇Ldtl −∇L̃∥22 (17)

subject to ∇L̃⊤∇Lretain ≥ 0 (18)

According to Equation (18), if ∇L̃⊤∇Lretain is non-
negative, then ∇L̃ = ∇Ldtl. If the inner product is neg-
ative, ∇L̃ is projected to ∇Lretain. The policy for gradient
updating reflects that the gradient of DTL loss should be up-
dated not to disturb the learning of the target task if there is
a directional conflict between the learning gradient and the
unlearning gradient. Finally, our solution for that problem
is as Equation (19).

∇L̃ =

{
∇Ldtl, if ∇L⊤

dtl∇Lretain ≥ 0

∇Ldtl − ∇L⊤
dtl∇Lretain

∇L⊤
retain∇Lretain

∇Lretain, otherwise

(19)
We adopted the novel gradient update policy for DTL,

but as shown in Figure 6b, it is found that the knowledge
retaining performance of A-GEM on target data (TGT-A-
GEM) is not clearly distinguished from naive knowledge
retaining with the cross-entropy loss with the target data
(TGT-CE). Fundamentally, due to the small scale of the tar-
get data, the models with retaining knowledge from the TL
model by distillation outperform others.

C.2. Normalized gradient collision loss

We conduct an extra investigation on a variant of the GC
loss where we eliminate the magnitude information from
the gradient, named Normalized Gradient Collision (NGC)
loss.

Definition C.1 (Normalized Gradient Collision loss)
Normalized GC loss is a variant of the GC loss (Equa-
tion (7)). It focuses on the angle between the loss and

ignores the scale of gradients by minimizing only the cosine
similarity of the gradient pairs.

Lngc(D, θ) =
1(
c
2

) ∑
m ̸=n

∇ℓm(θ)⊤∇ℓn(θ)

∥∇ℓm(θ)∥∥∇ℓn(θ)∥
(20)

In practice, we have found that regularizing the grad norm
as well as minimizing the variance, which corresponds to
the GC model, results in better performance. We show an
analysis of the NGC and GC loss in Appendix D.2.

C.3. KL-divergence cannot represent unlearning

In this section, we further discuss why simply minimiz-
ing the log-likelihood cannot lead to unlearning through a
counter-example. In the main manuscript, we have defined
the likelihood-minimizing objective function as Lnegative

in Equation (13).
The KL-divergence between a target distribution P and

model distribution Q is as follows:

DKL (P (y|x)||Q(y|x)) =
∑
y∈Y

P (y|x)log
P (y|x)
Q(y|x)

. (21)

It is seen that DKL(P ||Q) diverges if there exists a sam-
ple ŷ ∈ Y such that Q(y|x) → 0 and P (y|x) > 0 [2, 5].
Unlike the minimization of KL-divergence which results
in distributional similarity, KL-divergence can be trivially
maximized by degenerating the softmax score of a single
sample. Moreover, a trivial maximization can be achieved
by perturbing a few neurons on the uppermost layers, which
is highly related to class prediction value, so it is much eas-
ier to increase the KL divergence with the intact feature ex-
tractor.

D. Extended experimental results

D.1. Full result of the main experiments

In Table 6, we provide the raw results of our CIFAR-
100 DTL−−−→CIFAR-10-1%, CIFAR-100 DTL−−−→STL-10-10%,
and TinyImageNet DTL−−−→CIFAR-100-10% experiment, in-
cluding source accuracy, target accuracy, and PL accuracy.
It is visualized in various ways for motivating our work in
Figure 2, or highlighting the relative performance change
as shown in Table 1 and Table 3. From now on, we give a
straightforward explanation of how we interpret and focus
on the meaningful result based on the table.

The performance of the fine-tuning on different initializ-
ers, as plotted in Figure 2, is based on the PL accuracies of
SCR (red), PRE(green), and TL (green) model. It motivates
us to propose DTL, as claimed in the Introduction section,
that the fine-tuned model also is a competitive representa-
tion model as the pre-trained model.



Model Accs Acct↑
PL accuracy ↓

CIFAR-100-10% STL-10-10% SVHN-1%

SCR 1.00 8.53 25.75 39.58 22.40
PRE 71.54 11.41 68.20 63.45 60.82
TL 67.46 70.93 68.10 65.25 61.97

TGT 1.22 35.12 27.67 41.90 31.33

RAND 1.64 69.00 53.94 62.25 65.98
UNIF 2.74 71.41 55.06 64.08 69.63
NEG 0.02 71.17 60.92 65.16 71.10
GC 2.41 68.96 43.57 57.78 55.87

(a) CIFAR-100 DTL−−−→CIFAR-10-1%

Model Accs Acct↑
PL accuracy ↓

CIFAR-100-10% CIFAR-10-1% SVHN-1%

SCR 1.09 10.00 25.75 35.12 22.40
PRE 71.54 10.56 68.20 70.93 60.82
TL 65.41 63.45 68.15 72.12 60.82

TGT 1.15 39.58 27.76 36.94 33.85

RAND 2.02 62.47 56.88 70.21 67.24
UNIF 7.03 63.04 55.67 69.57 67.22
NEG 0.02 60.86 57.75 67.97 70.47
GC 3.14 61.53 45.16 61.19 56.63

(b) CIFAR-100 DTL−−−→STL-10-10%

Model Accs Acct↑
PL accuracy ↓

TinyImageNet-6% STL-10-10% CIFAR-10-1%

SCR 0.46 1.04 14.90 35.91 30.72
PRE 54.87 0.36 38.95 69.82 75.15
FT 38.06 55.99 39.12 67.71 72.08

TGT 0.41 25.16 17.16 45.44 40.82

RAND 1.22 53.79 29.20 65.81 67.40
UNIF 5.66 54.79 28.00 64.21 68.60
NEG 0.06 53.96 27.20 64.94 68.21
GC 5.46 54.35 26.40 62.83 64.18

(c) TinyImageNet DTL−−−→CIFAR-100-10%

Table 6: The transition of source and target accuracy for each DTL stage and piggyback learning in CIFAR-100 DTL−−−→CIFAR-
10-1%, CIFAR-100 DTL−−−→STL-10-10%, and TinyImageNet DTL−−−→CIFAR-100-10% experiments.

In Section 4.3, we emphasize the performance gain and
penalty on the target task by reporting the relative perfor-
mance in Table 1. It corresponds to the performance gap
with TGT / TL models and our unlearned models in Ta-
ble 6. PL accuracy is reported with the amount of perfor-
mance changed from the TL model to our unlearned mod-

els. Comparing the relative performance of the GC model
is a simpler way to evaluate its powerful DTL performance
than comparing its absolute performance.

Also, we show the appropriateness of PL accuracy by
reporting the absolute value of source accuracy and PL ac-
curacy in Table 3. We mainly focused on the irrelevance of
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(a) CIFAR-100 DTL−−−−→CIFAR-10-1%
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(b) CIFAR-100 DTL−−−−→STL-10-10%

Figure 8: Performance transition for each training step. The
model is repeatedly fine-tuned from the SCR model in order
of pre-training, fine-tuning, knowledge disposal, and piggy-
back learning. In other words, we can get the output models
in the sequence of SCR → PRE → TL → DTL → PL.
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(a) CIFAR-100 DTL−−−→CIFAR-
10-1% with unlearning variants
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(b) CIFAR-100 DTL−−−→STL-10-
10% experiment

Figure 9: (a) The result of the variants of unlearning losses
in CIFAR-100 DTL−−−→CIFAR-10-1% experiment, which is
plotted in the same manner with Figure 6a. NGC loss model
behavior is significantly different from GC loss model. Fur-
thermore, baseline losses with frozen FC behave similarly
as reported in the main manuscript. (b) The result of the
same analysis with Figure 6a in CIFAR-100 DTL−−−→STL-10-
10% experiment.

performance degradation (source accuracy) and knowledge
disposal (PL accuracy). Note that the reported PL accuracy
is the validation accuracy after training with a portion of the
source data, CIFAR-100.

D.2. Variants of unlearning losses

As well as the unlearning baselines in the main
manuscript, we also explore the variants in this section.
NGC model, defined at Equation (20), and the variants of
unlearning baselines are compared against our GC model
in Figure 9a. The unlearning baselines, which are plotted
in dashed lines, are unlearned by freezing the last classifi-
cation layer of the source task and applying corresponding
fooling losses. We freeze the classifier layer to test whether
the baseline unlearning losses effects only the FC layer or
not.
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(a) Source accuracy vs PL accu-
racy. ρs = −0.505.
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(b) Source accuracy vs Target
accuracy. ρs = 0.199.

Figure 10: The trade-off relationship of PL acc vs source
accuracy and target accuracy vs source accuracy in CIFAR-
100 DTL−−−→CIFAR-10-1% experiment with varying λ for
each unlearning loss. ρs indicates the Spearman correla-
tion coefficient.

Among the models in Figure 9a, we observed that the GC
loss performs the best. The frozen variants (dashed lines)
behave similarly to the result in Figure 6a. This implies that
the baseline fooling losses only affect a few uppermost non-
frozen layers. Interestingly, we have observed that the NGC
loss performs worse than all other baselines unlearning loss,
which shows that penalizing the gradient norm is also an
important factor in gradient collision unlearning.

Another possible unlearning might be conducted by dis-
tilling to a randomly initialized model. However, it fails to
transfer target task performance because the teacher lacks
the target task knowledge, as demonstrated Acct in Table 9.
This shows the target knowledge cannot be transferred by
distillation. In a similar manner, other model compression
methods such as pruning or quantization are not directly ap-
plicable for unlearning, as they are designed to best preserve
the knowledge and cut down redundancy.

D.3. Risks and limitations of GC unlearning

A natural trade-off exists between knowledge disposal
and the target task performance depending on the weight (λ)
between knowledge retaining and unlearning loss. Notably,
the proposed GC method demonstrated the most favorable
trade-off (refer to 6a). We further inspected the behavior of
GC unlearning by setting an extreme case when the source
and target are identical (see Table 8). Increasing the weight
on GC loss degrades the generalization performance while
they equally achieve 100% train accuracy. This is because
the GC loss acts as a regularization that favors over-fitted
solutions. Additionally, we found that increasing λ results
in higher loss curvature, which we measure by the trace of
Hessian (tr(Hθ)).



MIA strategy SCRATCH PRE TL TGT
AUROC Accuracy AUROC Accuracy AUROC Accuracy AUROC Accuracy

Softmax 49.61 ±0.23 50.24 ±0.13 67.96 ±0.23 66.09 ±0.25 63.71 ±0.24 61.68 ±0.28 49.86 ±0.29 50.42 ±0.20

Mentr. 50.06 ±0.25 50.42 ±0.17 70.14 ±0.20 68.49 ±0.19 67.33 ±0.20 65.15 ±0.18 50.12 ±0.19 50.44 ±0.13

Loss 50.00 ±0.05 50.06 ±0.04 69.93 ±0.20 68.50 ±0.19 67.25 ±0.20 65.19 ±0.18 49.97 ±0.04 50.01 ±0.00

Grad Norm 50.04 ±0.25 50.40 ±0.16 69.98 ±0.20 68.60 ±0.19 66.83 ±0.21 65.16 ±0.18 50.12 ±0.19 50.44 ±0.12

Adv. Dist 50.34 ±0.21 50.66 ±0.11 63.73 ±0.18 64.34 ±0.05 63.03 ±0.19 63.63 ±0.14 50.36 ±0.23 50.70 ±0.17

†Grad w 49.91 ±0.39 50.46 ±0.26 70.66 ±0.52 68.75 ±0.31 67.55 ±0.46 65.33 ±0.25 49.74 ±0.34 50.41 ±0.16

†Grad x 49.96 ±0.39 50.55 ±0.20 71.00 ±0.43 68.72 ±0.30 67.48 ±0.35 65.09 ±0.24 50.15 ±0.44 50.67 ±0.25

†Int. Outs 49.80 ±0.45 50.46 ±0.27 52.17 ±0.39 51.93 ±0.36 51.67 ±0.53 51.65 ±0.42 49.88 ±0.33 50.48 ±0.20

†WB 49.87 ±0.27 50.46 ±0.16 70.82 ±0.43 68.60 ±0.30 67.88 ±0.38 65.29 ±0.26 50.08 ±0.48 50.59 ±0.33

MIA strategy GC RAND NEG UNIF
AUROC Accuracy AUROC Accuracy AUROC Accuracy AUROC Accuracy

Softmax 50.76 ±0.22 50.93 ±0.16 51.51 ±0.32 51.47 ±0.22 50.91 ±0.26 50.96 ±0.22 50.65 ±0.28 50.79 ±0.21

Mentr. 50.23 ±0.29 50.47 ±0.19 51.41 ±0.19 51.41 ±0.14 52.06 ±0.26 51.90 ±0.19 53.88 ±0.13 53.18 ±0.11

Loss 50.23 ±0.29 50.47 ±0.19 51.42 ±0.19 51.42 ±0.14 56.46 ±0.24 55.01 ±0.18 53.88 ±0.13 53.18 ±0.11

Grad Norm 49.90 ±0.29 50.34 ±0.14 49.49 ±0.23 50.20 ±0.07 52.65 ±0.22 52.43 ±0.24 49.23 ±0.22 50.29 ±0.09

Adv. Dist 50.05 ±0.06 50.11 ±0.05 50.22 ±0.06 50.23 ±0.06 49.99 ±0.00 50.00 ±0.00 50.39 ±0.07 50.40 ±0.08

†Grad w 50.23 ±0.47 50.69 ±0.29 50.63 ±0.42 50.90 ±0.31 52.07 ±0.54 51.91 ±0.41 50.83 ±0.48 51.10 ±0.35

†Grad x 49.84 ±0.51 50.45 ±0.29 50.12 ±0.47 50.58 ±0.20 50.40 ±0.55 50.74 ±0.30 50.21 ±0.60 50.64 ±0.38

†Int. Outs 49.89 ±0.59 50.52 ±0.31 50.15 ±0.62 50.71 ±0.38 50.86 ±0.62 51.10 ±0.42 49.90 ±0.51 50.52 ±0.28

†WB 49.99 ±0.42 50.52 ±0.23 51.46 ±0.64 51.49 ±0.42 59.17 ±0.51 56.93 ±0.39 53.59 ±0.52 53.14 ±0.40

Table 7: The success rate of MIAs of models in CIFAR-100→CIFAR-10-1%. MIA strategies used are [3, 6, 7]. † involves
training an attacker model.
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(a) STL10 PL accuracy in

CIFAR-100 DTL−−−→CIFAR-10-1%.
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(b) CIFAR-100 PL accuracy in

CIFAR-100 DTL−−−→STL-10-10%.
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(c) SVHN PL accuracy in

CIFAR-100 DTL−−−→STL-10-10%.
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(d) CIFAR-10 PL accuracy in

CIFAR-100 DTL−−−→STL-10-10%.

Figure 11: PL accuracy for different sampling ratio γ

Loss λ Train acc. Test acc. tr(Hθ)

CE 0.00 100.00 76.13 66.2
CE+GC 0.10 100.00 72.18 226.2
CE+GC 0.15 100.00 71.12 314.4

Table 8: GC loss training when source task and target task
are identical (CIFAR-100). The norm of the curvature is
measured by the trace of the Hessian matrix.

D.4. The source accuracy cannot verify the knowl-
edge disposal

In Section 4.5, we have briefly discussed why the source
accuracy of the unlearned model cannot verify the success

Method ∆Acct
vs TGT ↑

∆Acct
vs TL ↑

∆Accpl vs TL ↓
CIFAR100-10% STL10-10% SVHN-1%

R18→R18 +3.98 -31.83 -39.31 -10.32 -34.71
R50→R18 +3.88 -31.93 -39.06 -10.68 -32.59

Reference 35.12 70.93 68.15 53.28 61.97

Table 9: DTL using knowledge distillation. R18 and R50
indicate ResNet-18/50.

of knowledge disposal with Table 3.
Moreover, there are additional reasons why the source

accuracy cannot measure the degree of unlearning. Primar-



ily, our work is motivated by the situation that the TL model
is susceptible to be adapted to various tasks except for the
target task. As a result, the source accuracy can be ignored
for model evaluation in the first place.

Also, the source accuracy cannot represent the con-
formability of other tasks. We demonstrated the trade-off of
the PL accuracy vs the source accuracy (Figure 10a) and the
target accuracy vs the source accuracy (Figure 10b). Those
are plotted with the same data for Figure 6a, in which we
evaluated the performance with varying the unlearning loss
and λ in CIFAR-100 DTL−−−→CIFAR-10-1% experiment. As
shown in Figure 10a, there the source accuracy has a low
effect on the PL accuracy. Particularly, source accuracy is
even negatively correlated with the PL accuracy because the
Spearman correlation coefficient of them is ρs = −0.505.

As mentioned in Table 3, the source accuracy is nearly
uncorrelated to the target accuracy. It is found that ex-
cept GC models, the source accuracy of every model is
lower than 2% with various ranges of target accuracy in Fig-
ure 10b and the Spearman correlation coefficient measured
on the target accuracy and source accuracy is ρ = 0.199.

D.5. Complete results

In Figure 11a, PL accuracy versus different sampling
ratios on the STL-10 dataset is reported, whereas there
are other analyses on different PL datasets after CIFAR-
100 DTL−−−→CIFAR-10-1% in Figure 5.

In addition, we also conducted the same analysis with
Figure 5 and Figure 6a in the CIFAR-100 DTL−−−→STL-10-
10% experiment. Refer to Figures 11b to 11d and Figure 9b,
respectively.

D.6. Extended results on the membership inference
attacks (MIAs)

In Table 2, we have reported the success rate of various
white-box MIAs – Adv. Dist, Grad w, Grad x, and WB
– for our unlearning models. Furthermore, in Table 7, we
provide extended results with more models and additional
attack methods. We adapted the implementation of [3] and
followed experimental details. Specifically, the two mea-
sures, AUROC and accuracy, are measured by varying the
threshold for binary classification of membership inference.
AUROC represents the trade-off of true positive ratio (TPR)
and false positive ratio (FPR) and accuracy is the best accu-
racy among various thresholding. Also, the reported values
are averaged success rates and corresponding standard de-
viations of 20 runs.

Here, we provide details on each attack method. First,
we attacked the models with various black-box methods.
The Softmax response (Softmax) method is the most naive
attack method, which attacks the model with the softmax
output from the assumption that the predicted output from

training data will be more confident. Modified entropy
(Mentr.) is a variant of the Softmax method because it mea-
sures the output’s uncertainty and it determines the sam-
ple with low uncertainty to the training sample. The Loss
(Loss) method finds out the training sample by measuring
the loss function and decides the sample with a lower loss
to the training data.

Also, we applied the white-box methods to our mod-
els. The gradient norm (Grad Norm) method calculates
the ℓ2-norm of the gradient with respect to the model pa-
rameter and figures out the sample with a smaller norm to
be a training sample. [3] proposes the adversarial distance
(Adv. Dist) to measure the amount of perturbation of an ex-
ample so that the model wrongly predicts the class of the
sample in a white-box manner. [7] proposes a white-box
attack method based on the gradient of the loss with re-
spect to model weight (Grad w) and input (Grad x). The
authors claim that the larger norm of both gradients indi-
cates the sample is not a member of the training set. Though
excluded in the main manuscript, the intermediate outputs
(Int.Outs) method attacks a target model with the outputs of
the final two layers as introduced in [7]. White-box method
(WB) [6] takes intermediate feature and gradient for MIA.
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