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In the supplementary material, we provide additional in-
formation to better understand the contributions and claims
of our proposed work. First, the ablation results for var-
ious encoder-decoder backbones (3DUnet, nnUnet, Atten-
tionUnet) are shown in Sec. 7. Our method also attains
state-of-the-art performance when re-implemented with a
3DUnet backbone (like others). Note that we always main-
tain 50% full modality as the default setup for our approach.
Other methods are however re-implemented with two dif-
ferent proportions (100% and 50% full modality data). In
Sec. 8 we demonstrate the robustness of our approach to
varying proportions of full modality data. Ablation results
are provided for additional tumor regions. Evaluations via
an additional metric, Hausdorff Distance, on BRATS2018
and BRATS2020 are shown in Sec. 9. Comprehensive re-
sults on BRATS2019 and BRATS2020 datasets are pro-
vided in Sec. 10. In Sec. 11, further experiments are con-
ducted to test the bias of our model to the occurrence of
a specific modality (FLAIR or T1c) as input during train-
ing. In Sec. 12 we discuss the fusion strategy in more
detail through equations. Architectural details and exper-
iments with different fusion baselines are demonstrated
in Sec. 13. Additional qualitative segmentation maps are
shown in Sec. 14. Further details regarding the implemen-
tation, including pre-processing steps, are outlined in Sec-
tion 15. The segmentation performance of our model on
additional non-BRATS datasets can be found in Sec. 16.

7. Ablation results on robustness to encoder-
decoder backbones

Our proposed meta-learning and adversarial training
strategies are independent of the backbones utilized in the
framework. We evaluate our approach using different back-
bones including 3DUnet [2], nnUnet [6], and Attentio-
nUnet [8]. The average DSCs reported in Tab. 7 vary

marginally between 1.25% and 2.6% across all encoder-
decoder variants, highlighting the backbone-agnostic na-
ture of our framework. A schematic of the adopted Swin-
UNETR encoder is provided in Fig. 11.

Methods Average DSC(%), p-value (10−2)
WT TC ET

3DUnet [2] 85.70, 42.04 77.87, 67.28 59.93, 67.41
AttentionUnet [8] 86.02, 52.05 78.05, 71.10 60.46, 73.13

nnUnet [6] 86.53, 72.47 78.64, 86.16 62.28, 96.69
Ours 87.12 79.12 62.53

Table 7: Ablation on backbone variants

For the convenience of comparison, we have listed all the
model performances (implemented using 3D-Unet back-
bone) in Tab 8. It should be noted that even with 3D-Unet as
the backbone, our proposed method achieves results compa-
rable to SOTA. This performance improvement may be at-
tributed to the proposed meta and adversarial learning tech-
niques, rather than the choice of backbone. However, our
framework is trained with only 50% full modality samples,
unlike other approaches that utilize full modality for all pa-
tients (100%).

Moreover, methods like mmFormer, RFNet, and ACN
always require full-modality data as input. For a fair com-
parison, we have demonstrated in Tab. 9 that, if considering
only 50% full-modality data as input (like ours), there is a
significant drop in performance for all other methods.

8. Additional ablation results on robustness to
full modality

Ablation results on the WT region have been provided in
the main paper (Sec. 4.2, Fig. 7a) to demonstrate that our
method performs well even with a limited number of full
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Methods Average DSC (%)
WT TC ET

HeMIS [5] 76.23 58.57 45.11
U-HVED [4] 79.55 64.55 48.44
D2-Net [10] 77.04 67.65 45.22

ACN [9] 85.25 77.16 60.85
RFNet [3] 85.75 76.99 59.67

mmFormer [11] 86.25 74.89 55.88
Ours (3D-Unet) 85.70 77.87 59.93

Table 8: Comparison on BRATS2018 with 3D-Unet back-
bone. All methods here are implemented with 3D-Unet.
Only our approach is trained with 50% full modality sam-
ples while HeMIS, U-HVED. D2-Net, ACN, RFNet, and
mmFormer are trained with 100% full modality samples.

Methods Average DSC (%), p-value (10−2)
WT TC ET

ACN[9] 65.81, 0.01∗ 57.66, 0.01∗ 47.36, 1.50∗

RFNet[3] 73.96, 0.01∗ 62.37, 0.01∗ 50.24, 3.95∗

mmFormer[11] 75.34, 0.01∗ 66.19, 0.01∗ 52.81, 8.79
Ours (3D-Unet) 85.70 77.87 59.93

Table 9: Comparison (DSC%, p-value) on BRATS2018
with 3D-Unet backbone. All methods here are implemented
with 3D-Unet, and trained with 50% full modality samples.

Figure 8: Ablation studies for varying % of full modality in
training.

modality samples in training. Here we are providing addi-
tional results for TC and ET regions. We compare against
ACN [9], RFNet [3], and mmFormer [11] by varying the
full modality count from 100% to 40% (Fig. 8). In order to
retain sufficient samples for each combination task in meta-
training, we assume that at least 50% of the patients have
partial modalities. Hence we show our results only on 50%
and 40% proportions of full modality data. Unlike other
methods, ours shows only a minor decline in DSC (0.3%)
for both TC and ET. These experimental results further sup-
port the claim that our proposed method is robust to full
modality setting.

We also present the results (Tab. 10) achieved by our
method when trained with 10% and 20% full modality sam-
ples. Notably, our method still generates high dice scores
even in such severely missing modality scenarios. Please
note that it was not possible to train SOTA methods in this
scenario since they are left with only ≈20 or ≈40 subjects.

Settings Average DSC (%)
WT TC ET

10% FM 81.56 72.89 56.70
20% FM 84.41 76.63 60.82
50% FM 87.12 79.12 62.53

Table 10: Ablation on BRATS2018 when trained with an
extremely low proportion of full modality samples.

9. Additional metric (Hausdorff distance)

Model evaluations have also been performed us-
ing Hausdorff Distance (HD95) on BRATS2018 and
BRATS2020, respectively. The results can be found in
Tab. 11 and 12. It can be observed from Tab. 11 that
our method significantly outperforms SOTA in 2/3 tumor
regions (WT, TC) and emerges second-best for ET on
BRATS2018; noting that all other methods are trained with
100% full modality samples, ours is only 50%.

Methods Average HD95 (↓), p-value (10−2)
WT TC ET

HeMIS [5] 14.85±7.32, 0.08∗ 15.58±8.44, 0.16∗ 19.65±12.37, 0.25∗

U-HVED [4] 13.64±6.27, 0.12∗ 14.91±7.19, 0.09∗ 18.43±11.68, 0.42∗

D2-Net [10] 10.82±6.70, 7.75 11.76±7.35, 5.12 14.79±8.79, 1.75∗

ACN [9] 8.15±2.03, 39.05 9.37±2.81, 8.39 8.62±2.43, 86.77
RFNet [3] 7.89±1.72, 58.64 8.43±2.52, 42.09 12.56±3.68, 0.36∗

mmFormer [11] 7.67±2.14, 84.97 8.06±2.41, 69.59 10.54±3.13, 11.41
Ours 7.53±1.86 7.73±2.16 8.78±2.77

Table 11: Comparison on BRATS2018 with HD95. The
best and second best scores are bolded and underlined, re-
spectively.

Methods Average HD95 (↓), p-value (10−2)
WT TC ET

HeMIS [5] 14.41±7.14, 0.11∗ 15.13±8.29, 0.21∗ 19.24±12.07, 0.26∗

U-HVED [4] 13.32±6.11, 0.13∗ 14.74±6.97, 0.08∗ 18.26±11.53, 0.41∗

RFNet [3] 7.66±1.74, 76.06 8.27±2.45, 44.00 12.38±3.72, 0.44∗

Ours 7.46±1.82 7.60±2.23 8.69±2.72

Table 12: Comparison on BRATS2020 with HD95. The
best and second best scores are bolded and underlined, re-
spectively.

10. Results on BRATS2019 and BRATS2020
datasets

In Tab. 13, we compare our approach with three state-
of-the-art methods including HeMIS [5], U-HVED [4],
and RFNet [3] for tumor segmentation on BRATS2020
dataset [7]. The average DSCs of the three tumor areas
are boosted by 1.78%, 2.84%, and 3.13%, respectively. A
similar comparison on the BRATS2019 dataset is shown
in Tab. 14, where the average DSC scores are boosted by
1.57%, 2.83%, and 2.94%.



M

FLAIR ◦ ◦ ◦ • ◦ ◦ • ◦ • • • • • ◦ •

AvgT1 ◦ ◦ • ◦ ◦ • • • ◦ ◦ • • ◦ • •
T1c ◦ • ◦ ◦ • • ◦ ◦ ◦ • • ◦ • • •
T2 • ◦ ◦ ◦ • ◦ ◦ • • ◦ ◦ • • • •

WT

HeMIS[5] 80.34 66.92 66.35 58.72 85.16 73.41 69.79 83.30 83.76 73.41 76.78 84.43 85.17 85.84 86.03 77.29
U-HVED[4] 82.13 71.42 58.30 82.76 85.72 74.09 86.46 84.34 87.91 87.15 86.59 88.66 88.92 85.86 89.43 82.65

RFNet[3] 86.30 76.34 77.72 87.05 88.02 81.07 89.72 88.02 89.64 89.51 90.44 90.62 90.55 88.50 91.01 86.96
Ours 88.24 82.29 83.41 88.37 88.78 83.26 90.52 89.66 90.55 90.83 91.34 91.68 91.17 89.49 91.57 88.74

TC

HeMIS[5] 60.83 74.22 48.57 37.03 79.84 78.35 48.19 60.80 60.21 74.62 78.88 63.48 79.24 81.56 81.03 67.12
U-HVED[4] 61.37 74.93 39.54 52.42 80.27 79.11 57.38 62.17 63.47 77.45 79.02 65.39 80.19 81.72 81.68 69.07

RFNet[3] 70.94 82.45 65.58 69.88 85.82 83.88 72.76 72.90 73.45 85.71 85.97 74.74 86.11 85.55 86.24 78.79
Ours 73.56 86.37 74.69 72.33 87.71 87.52 75.94 74.50 76.24 87.79 87.82 76.93 87.31 87.98 87.75 81.63

ET

HeMIS[5] 32.78 64.95 20.41 14.63 71.12 71.40 19.04 29.76 30.66 69.52 71.39 32.13 71.98 72.37 72.44 49.64
U-HVED[4] 31.86 68.43 18.21 25.85 70.48 70.79 27.94 32.37 33.64 71.24 72.16 34.48 71.72 71.92 71.87 51.53

RFNet[3] 48.03 74.84 36.58 38.45 76.66 76.52 43.12 51.40 51.02 76.38 77.10 49.82 77.07 78.10 77.02 62.14
Ours 52.77 80.06 42.28 44.87 78.92 79.85 46.73 54.67 54.29 78.81 77.31 50.69 79.24 79.43 79.12 65.27

Table 13: Comparison with state-of-the-art for the different combinations of available modalities on BRATS2020. Dice
scores (DSC %) are computed for three nested tumor subregions - Whole tumor (WT), Tumor core (TC), Enhancing tumor
(ET). Modalities present are denoted by •, the missing ones by ◦. The best and second best scores are bolded and underlined,
respectively.

Methods Average DSC (%)
WT TC ET

HeMIS [5] 76.69 64.37 48.24
U-HVED [4] 81.53 67.81 50.25

RFNet [3] 86.49 77.92 60.88
Ours 88.06 80.75 63.82

Table 14: Comparison (DSC %) on BRATS2019

11. Additional ablation results on bias to pres-
ence of a specific modality

In the main paper (Sec. 4.2, Fig. 7b) we have provided
ablation results on the WT region by varying FLAIR pro-
portion in training from 35% to 45%. Here we provide
extensive results for the remaining two tumor regions (TC
and ET). Fig. 9 suggests that upon increasing FLAIR from
35% to 45%, our model’s DSC gain (for both TC and ET)
is much less when compared to that of U-HVED or D2Net.
This demonstrates that our approach is not sensitive to pres-
ence of any particular modality. Similar conclusions can
also be drawn when experiments are carried out keeping
T1c as the rarely occurring modality instead of FLAIR. The
results are presented in Tab. 15 and Fig. 10.

Figure 9: Ablation studies for varying % of FLAIR in train-
ing.

M

FLAIR ◦ ◦ ◦ • • • ◦ •

Avg
T1 ◦ ◦ • ◦ • ◦ • •
T1c • • • • • • • •
T2 ◦ • ◦ ◦ ◦ • • •

WT

U-HVED 54.38 77.63 63.70 82.28 84.06 84.96 81.19 86.37 76.82
D2-Net 39.14 81.57 62.77 86.32 85.98 87.85 82.40 87.53 76.70

Ours 78.46 85.71 78.83 89.22 89.64 90.08 87.19 90.57 86.21

TC

U-HVED 61.16 70.87 62.21 70.65 72.24 70.59 74.52 70.87 69.13
D2-Net 61.73 78.46 75.31 80.69 78.17 79.85 78.77 79.58 76.57

Ours 83.62 84.79 83.56 84.18 84.35 83.88 85.80 85.94 84.51

ET

U-HVED 57.23 65.39 62.08 65.76 68.15 67.81 67.26 69.42 65.38
D2-Net 65.13 66.37 67.84 65.41 65.06 65.33 67.98 66.27 66.17

Ours 77.02 75.98 76.43 76.25 75.11 76.67 75.89 77.54 76.36

Table 15: Ablation results for rare occurrence (35%) of T1c
in training. • for T1c in all combinations denote that T1c is
always present in inference despite being rare on training.

12. Details on Feature Aggregation Module
For a particular level l, a modality feature Fl

j ∈
RC×H×W×Q includes C channels and feature maps of size
H ×W ×Q where j ∈ {1, 2, ..., n}. The channels in these
generated features are considered to encode relevant tumor-
class specific information. Our fusion block exploits the
correlation among available modality representations to de-
velop a unified feature that best describes the tumor char-
acteristics of a particular patient. First, the channel infor-
mation γl

j of a modality at level l is preserved through the
following equation:

γl
j = GAP (Fl

j) =
1

H ×W ×Q

H∑
h=1

W∑
w=1

Q∑
q=1

Fl
j(h,w, q),

(1)
where j ∈ {1, 2, ..., n} and GAP denotes Global Average
Pooling operation. Following this, we not only concatenate



Figure 10: Ablation studies for varying % of T1c in training.

γl
1, γ

l
2, ..., γ

l
n, but also impute zeros in the channel infor-

mation of (M − n) missing modalities to form a resultant
M -dimensional vector γl.

γl = γl
1 ⊕ γl

2 ⊕ γl
3...⊕ γl

M , (2)

γl is mapped to the channel weights of M modality features
through a multi-layer perceptron (MLP ) and sigmoid acti-
vation function, σ.

Γl = σ(MLP (γl)). (3)

Though Γl contains M scalar values, only the weights of n
available modalities are multiplied with their corresponding
features. These weighted features are finally summed to
obtain the fused representation Fl

fused.

Fl
fused =

n∑
j=1

Γl
jF

l
j . (4)

Figure 11: A schematic of the adopted Swin-UNETR en-
coder.

13. Fusion baselines and ablation
We design three baseline aggregation modules to high-

light the contribution of our fusion strategy. The architec-
tures of the three fusion baselines, (a) Sum, (b) Average,
and (c) Att-Pool are illustrated in Fig. 12. For the first
two approaches, feature maps from the available modalities
are summed or averaged along the channel dimension C to

obtain the fused feature. In the third approach, available
modality features are individually passed through a Global
Average Pooling (GAP) layer. The GAP outputs are fed
to a Fully Connected Network (FCN) followed by a soft-
max activation function, producing the attention weights of
each modality. Finally, attention-weighted summation of
the original modality features gives rise to the fused feature.
The ablation results are shown in Tab. 16. Our feature ag-
gregation block provides a better technique for dynamically
learning from the heterogeneous input modalities, followed
by inducing channel interaction among them. However, this
plug-and-play fusion module is not a primary contribution
and can be replaced by SOTA fusion techniques [3, 1].

Methods Average DSC (%)
WT TC ET

Sum 85.99 78.21 60.85
Average 86.14 78.36 61.30
Att-pool 86.93 79.07 62.28

Ours 87.12 79.12 62.53

Table 16: Ablation study on fusion.

14. Qualitative comparison
In Fig. 13 we visualize the segmentation masks predicted

by U-HVED, RFNet, and our method from four combina-
tions of modalities in the inference phase. Unlike other
methods, our segmentations do not degrade sharply as addi-
tional modalities are dropped during inference. Even with
single T2 or T1+T2 modalities, our model achieves higher
DSC scores.

15. Additional pre-processing and implemen-
tation details

As part of pre-processing, the organizers skull-stripped
the volumes and interpolated them to an isotropic 1mm3

resolution. For a given patient, the four sequences have
been co-registered to the same anatomical template. Aug-
mentations including random rotations, intensity shifts, and
mirror flipping, are applied to the resized images. The fore-
ground voxels within the brain are intensity-normalized to



Figure 12: Fusion baselines

Figure 13: Qualitative comparisons with SOTA. Column
1: four MRI modalities. Column 2-4: segmentation maps
predicted by three methods for different combinations of
modalities. Column 5: Ground truth.

zero mean and unit standard deviation. We train our net-
work using AdamW optimizer with an outer loop learning
rate β = 5e−4 for a maximum of 500 epochs. The two hy-
perparameters λ1 and λ2 in generator loss LE are taken as
0.8 and 0.2, respectively. During training, Ldis is multiplied
by 0.5 to prevent it from overpowering the generator.

Learning rate (LR: 5e-5), λ1: 0.8, λ2: 0.2, and scale of
discriminator (Sc: 0.5) were selected based on the model
performance. Results with different sets of parameters are
shown in Tab. 17.

LR WT DSC(%)
5e-3 86.79
5e-4 86.95
5e-5 87.12

λ1, λ2 Avg DSC % (WT, TC, ET)
0.9, 0.1 86.89, 78.94, 62.37
0.8, 0.2 87.12, 79.12, 62.53
0.7, 0.3 86.97, 78.83, 62.19

Sc WT DSC(%)
0.25 86.44
0.5 87.12
0.6 87.03

Table 17: Selection of experimental parameters

16. Results on additional datasets
We show the segmentation results (Tab. 18, 19) on two

additional datasets not in the BRATS cohort. The first
dataset, D1 contains 4 MRI modalities for 80 patients. For
this dataset, we segment brain glioma tumors into 3 re-
gions (WT, TC, ET). Another dataset, D2 contains 1 MRI
modality (FLAIR) and 1 CT modality for 85 patients with
metastatic brain tumors as the segmentation targets. Unlike
the solitary brain tumors studied in the other datasets, multi-
ple distinct metastatic targets can occur at multiple locations
within a patient’s brain for D2.

Methods Average DSC (%)
WT TC ET

U-HVED [14] 75.37 60.29 47.52
RFnet [13] 81.04 72.15 53.22

mmFormer [55] 81.73 71.31 51.49
Ours 82.53 74.26 56.13

Table 18: Results on D1.

FLAIR • ◦ • Avg DSCCT ◦ • •
U-HVED 49.93 46.20 48.59 48.24

RFNet 53.62 51.37 53.16 52.71
mmFormer 54.88 52.85 54.63 54.12

Ours 55.19 53.27 55.06 54.50

Table 19: Results on D2.
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