
Supplementary Material for
“PG-RCNN: Semantic Surface Point Generation for 3D Object Detection”

Inyong Koo* Inyoung Lee* Se-Ho Kim Hee-Seon Kim Woo-jin Jeon Changick Kim

KAIST
Daejeon, South Korea

{iykoo010, inzero24, ksh1040, hskim98, woojin.jeon337, changick}@kaist.ac.kr

S1. Data and Code License

We used the KITTI dataset [2] and the Waymo Open

Dataset [7] for our experiments. Both datasets are licensed

and widely used for academic research.

Our code is licensed under the ”Apache License 2.0”.

We have included our code and a trained checkpoint of PG-

RCNN in the supplementary material, and it will be released

as a Github repository after the conference. Please refer

to the README.md file in the supplementary material for

details.

S2. Details of Training Losses

In Section 3.4 of the submitted manuscript, we provide

an explanation of the training losses for PG-RCNN, with

a focus on the novel point generation loss LRPG. In this

section, we provide further details on the conventional train-

ing losses used for two-stage detectors, specifically the re-

gion proposal loss LRPN and the proposal refinement loss

Lhead.

Our implementation of LRPN is consistent with those

used in prior works such as [8, 4, 6, 1]. For dense pre-

dictions generated by the proposal layers, we assign classi-

fication targets based on IoU thresholds for each class, as

follows:

c∗i =

{
c IoUc

i ≥ θcH ,

0 IoUc
i < θcL,

(S1)

where IoUc
i is the IoU between the i-th anchor proposal and

the corresponding ground truth bounding box with class la-

bel c, and θcH and θcL represent the foreground and back-

ground IoU thresholds, respectively, for class c. To cal-

culate the classification term of the region proposal loss

LRPN−cls, we sample 512 anchors and apply Focal Loss

*Denote equal contribution

[10]:

LRPN−cls(p
a
i , c

∗
i ) = −α(1− pai (c

∗
i ))

γ log(pai (c
∗
i )). (S2)

Here, pai (c
i) denotes the i-th anchor proposal’s classifica-

tion branch output for the class probability of ci . The pa-

rameters of the focal loss, α and γ, are set to α = 0.25 and

γ = 2 for our training process.

The regression target is obtained using the residuals be-

tween the anchor box and the ground truth bounding box.

A bounding box is represented with seven parameters b =
(x, y, z, l, w, h, θ), where x, y, and z are the center coor-

dinates, w, l, and h are the width, length, and height, re-

spectively, and θ is the yaw rotation around the z-axis. The

residuals are calculated as follows:

Δx =
xgt − xa

da
, Δy =

ygt − xa

da
, Δz =

zgt − za

ha
,

Δw = log
wgt

wa
, Δl = log

lgt

la
, Δh = log

hgt

ha
,

Δθ = sin (θgt − θa),

(S3)

where the parameters for ground truth and anchor boxes are

indicated with the superscripts gt and a, respectively, and

da =
√

(la)2 + (wa)2 is the diagonal of the base of the an-

chor box. Note that in our definition of Δθ, θa and θa + π
yield the same residual. To address the direction ambigu-

ity, we incorporate a direction classifier into the regression

branch, which is trained using a cross-entropy loss func-

tion. The direction classifier target δ∗(d) is positive when

the θ > 0 and negative otherwise. The regression term

of the region proposal loss LRPN−reg is composed of the

Smooth-L1 loss for the bounding box parameters and the



cross-entropy loss for the direction classifier. i.e.,

LRPN−reg(δ
a
i , δ

∗
i ) =∑

b∈{x,y,z,l,w,h,θ}
SmoothL1(δai (b),Δb)

+ βdirCrossEntropy(δai (d), δ
∗
i (d)),

(S4)

where δai is the output of the regression branch, and βdir =
0.1 is a balancing parameter for the direction classifier loss.

The total region proposal loss LRPN is composed of

LRPN =
1

Nfa

∑
i

[LRPN−cls(c
a
i , c

∗
i )

+1(c∗i ≥ 1)βregLRPN−reg(δ
a
i , δ

∗
i )] , (S5)

where Nfa is the number of foreground anchors, βreg = 2
is a balancing parameter for regression loss, and 1(c∗i ≥
1) indicates that only foreground anchors contribute to the

regression loss.

Similarly, the proposal refinement loss Lhead is calcu-

lated with the detection head outputs as follows:

Lhead =
1

Nsp

∑
i

[Lhead−cls(l
p
i , l

∗
i )

+1(IoUi ≥ θreg)Lhead−reg(δ
p
i , δ

∗
i )] , (S6)

where Nsp is the number of sampled proposals, and

Lhead−cls and Lhead−reg are the classification and regres-

sion loss terms acquired from the confidence branch and re-

finement branch, respectively. 1(IoUi ≥ θreg) indicates

that the regression loss is only calculated with proposals

with IoU over a threshold θreg . The classification target

assigned for detection head loss l∗i is an IoU-related value,

similar to Eq. S1

l∗i =

⎧⎪⎨
⎪⎩
1 IoUi ≥ θH ,
IoUi−θL
θH−θL

θL ≤ IoUi < θH ,

0 IoUi < θL.

(S7)

Here, we used the binary cross-entropy loss for Lhead−cls.

The regression targets for the detection head are similarly

obtained as in Eq. S3. We don’t attach a direction clas-

sifier here. Instead, we calculate the corner points of the

given and ground-truth bounding boxes and use the residual

to further regularize the regression process. The regression

term of the proposal refinement loss Lhead−reg is comprised

of:

LRPN−reg(δ
p
i , δ

∗
i ) =∑

b∈{x,y,z,l,w,h,θ}
SmoothL1(δpi (b),Δb)

+
∑

j=1,2,··· ,8
SmoothL1(δpi (cj), δ

∗
i (cj)),

(S8)

Figure S1. Examples of completed point clouds for cars, pedestri-

ans, and cyclists in Waymo Open Dataset.

Table S1. Performance comparison on the validation set of Waymo

Open Dataset. All training data was used for this experiment. The

best performance value is in bold.

Method
Vehicle 3D APR40

Overall 0-30m 30-50m 50m-Inf

L1

PV-RCNN [6] 70.30 91.92 69.21 42.17

Voxel R-CNN [1] 75.59 92.49 74.09 53.15
PG-RCNN (Ours) 75.70 91.46 74.14 52.87

L2

PV-RCNN [6] 65.36 91.58 65.13 36.46

Voxel R-CNN [1] 66.59 91.74 67.89 40.80

PG-RCNN (Ours) 67.36 90.23 67.76 40.98

where δpi (cj) and δ∗i (cj), j = 1, 2, · · · , 8 are the eight cor-

ner point coordinates of i-th proposal and its corresponding

ground truth bounding box.

S3. Experiments on Waymo
S3.1. Experimental Setup

Waymo Open Dataset. The Waymo Open Dataset [7]

is a large-scale autonomous driving dataset containing 798

training sequences (around 158k point cloud samples) and

202 validation sequences (around 40k point cloud samples).

Our method requires complete point clouds of the ob-

jects to supervise point generation. To accomplish this,

we approximated the complete shape by utilizing different

instances of the same object class. In the KITTI dataset

[2], we searched for objects that display similar point dis-

tributions and bounding boxes and combined their point

clouds with the original point cloud to create a dense point



Table S2. Performance comparison on the validation set of Waymo Open Dataset. 20% of training data was used for this experiment. The

best performance value is in bold.

Method

Vehicle Pedestrian Cyclist

LEVEL 1 LEVEL 2 LEVEL 1 LEVEL 2 LEVEL 1 LEVEL 2

mAP mAPH mAP mAPH mAP mAPH mAP mAPH mAP mAPH mAP mAPH

PV-RCNN [6] 75.29 74.61 66.75 66.12 72.12 60.71 63.05 52.90 66.43 64.39 63.97 62.00

Voxel R-CNN [1] 74.82 74.23 66.16 65.62 66.66 57.43 57.74 49.61 68.57 67.01 66.03 64.53

PG-RCNN (Ours) 74.57 74.09 66.16 65.71 77.06 70.90 68.41 62.73 69.76 68.65 67.16 66.10

cloud. However, the Waymo Open Dataset contains signifi-

cantly more object instances than KITTI (# cars: 1.02M vs.

10.7K), which presents a challenge for using the complete

shape approximation method as in KITTI. Fortunately, ob-

jects in Waymo Open Dataset often reappear in other point

cloud samples that belong to the same sequence, and the ob-

ject instance IDs are provided. We can track the object in-

stance and use the object point clouds from different views

to augment the original point cloud. For vehicles and cy-

clists, we mirror the points along the object’s heading axis,

assuming symmetry, as we did in the KITTI dataset. Figure

S1 displays examples of the completed point clouds used for

generation targets. Note that we were not able to provide

generation targets for all annotated objects due to insuffi-

cient collected points. For example, we managed to pro-

duce dense generate targets for 31,126 unique car objects

but missed 15,296. In future work, a better data prepara-

tion method could be explored, such as using a point com-

pletion network [9] trained with available data to produce

dense complete point clouds for all objects.

Implementation Details. The detection range for Waymo

Open Dataset is [-75.2m, 75.2m], [-75.2m, 75.2m], and [-

2m, 4m] for the X, Y, and Z-axis respectively, and a voxel

size of (0.1m, 0.1m, 0.15m) is used. We used an almost

identical network architecture in KITTI for the experiments,

except using an increased number of channels of the pro-

posal layers to (128, 256) and 192 for grid feature dimen-

sion.

PG-RCNN is trained using the Adam optimizer [3] with

a one-cycle policy for 30 epochs with an initial learning

rate of 0.01. We calculate the point-level segmentation

loss Lscore on 4,096 points. Due to a lack of time and re-

sources, we did not fully tune the hyperparameters for the

Waymo Open Dataset. We expect that employing a more so-

phisticated detection head can improve scalability to larger

datasets. We will report a better configuration for Waymo

Open Dataset on our code release.

Experiment results We compare the performance of our

method with two significant works, PV-RCNN [6], and

Voxel R-CNN [1]. The model trained on the training set

is evaluated on the validation set using mean average preci-

sion (mAP) and mean average precision weighted by head-

ing (mAPH), using IoU thresholds of 0.7 for Vehicles and

0.5 for Pedestrians and Cyclists. Objects are categorized

into two groups based on the number of points within their

bounding boxes: LEVEL 1 (L1) includes more than five

points, while LEVEL 2 (L2) includes fewer than five points.

Table S2 shows the 3D detection results for vehicles,

pedestrians, and cyclists. Here, we re-implemented the pre-

vious methods and compared the performance with ours,

using 20% of training data. Without bells and whistles, our

PG-RCNN shows comparable performance with the two

previous methods. Especially, PG-RCNN significantly out-

performs previous methods for pedestrians and cyclists.

Table S1 shows the 3D detection performance on ve-

hicles in different distance ranges, using all training data.

The results for PV-RCNN and Voxel R-CNN are obtained

from their papers. PG-RCNN achieves a better performance

overall, but we admit that our method does not clearly out-

perform previous methods in the experiments. Neverthe-

less, the qualitative results (Fig. S2) show promising de-

tection and point cloud generation performance. We will

continue evaluations on Waymo Open Dataset with differ-

ent configurations and data preparation methods to report

better settings for the dataset.

S4. More Qualitative Results
In our main paper, we only showed the visualization for

car detection results to compare with SIENet [5]. Figure S3

shows more examples on the KITTI dataset that includes

detection results of pedestrians and cyclists. The qualitative

results show that PG-RCNN is also capable of generating

accurate point clouds for pedestrians and cyclists.

References
[1] Jiajun Deng, Shaoshuai Shi, Peiwei Li, Wengang Zhou,

Yanyong Zhang, and Houqiang Li. Voxel r-cnn: Towards

high performance voxel-based 3d object detection. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,

volume 35, pages 1201–1209, 2021.

[2] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we

ready for autonomous driving? the kitti vision benchmark

suite. In 2012 IEEE conference on computer vision and pat-
tern recognition, pages 3354–3361. IEEE, 2012.

[3] Diederik P. Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. In Yoshua Bengio and Yann LeCun,



(a) (b)

Figure S2. Point generation and detection results on Waymo Open Dataset. (a) Bird-eye-view and (b) zoom-in view. The generated points,

predicted bounding boxes, and ground truth bounding boxes are highlighted in yellow, green, and blue, respectively.

PG
-R

C
N

N
 (O

ur
s)

G
T

Figure S3. More qualitative results on KITTI dataset. The generated points, predicted bounding boxes, and ground truth bounding boxes

are highlighted in yellow, green, and blue, respectively.



editors, 3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015.

[4] Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou,

Jiong Yang, and Oscar Beijbom. Pointpillars: Fast encoders

for object detection from point clouds. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 12697–12705, 2019.

[5] Ziyu Li, Yuncong Yao, Zhibin Quan, Jin Xie, and Wankou

Yang. Spatial information enhancement network for 3d

object detection from point cloud. Pattern Recognition,

128:108684, 2022.

[6] Shaoshuai Shi, Chaoxu Guo, Li Jiang, Zhe Wang, Jianping

Shi, Xiaogang Wang, and Hongsheng Li. Pv-rcnn: Point-

voxel feature set abstraction for 3d object detection. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 10529–10538, 2020.

[7] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien

Chouard, Vijaysai Patnaik, Paul Tsui, James Guo, Yin Zhou,

Yuning Chai, Benjamin Caine, et al. Scalability in perception

for autonomous driving: Waymo open dataset. In Proceed-
ings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 2446–2454, 2020.

[8] Yan Yan, Yuxing Mao, and Bo Li. Second: Sparsely embed-

ded convolutional detection. Sensors, 18(10):3337, 2018.

[9] Wentao Yuan, Tejas Khot, David Held, Christoph Mertz, and

Martial Hebert. Pcn: Point completion network. In 2018 in-
ternational conference on 3D vision (3DV), pages 728–737.

IEEE, 2018.

[10] Peng Yun, Lei Tai, Yuan Wang, Chengju Liu, and Ming Liu.

Focal loss in 3d object detection. IEEE Robotics and Au-
tomation Letters, 4(2):1263–1270, 2019.


