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Figure S1: A visual gallery of airplanes, chairs, and tables generated by SALAD.



S.1. Overview

In this supplementary material, we first illustrate additional details in the implementation of SALAD (Section S.2) and
details of the experiments discussed in the main paper (Section S.3). Then, we report additional experimental results: multi-
class generation (Section S.4), shape generation with more classes (Section S.5) and shape generation with different number
of parts (Section S.6). Lastly, we report more qualitative results of the experiments reported in the main paper: shape gen-
eration (Section S.7), part completion (Section S.8), part mixing and refinement (Section S.9), text-guided shape generation
(Section S.10), and text-guided part completion (Section S.11).

S.2. SALAD Implementation Details

As discussed in Section 3.2 of the main paper, an extrinsic vector ei is represented by {ci, λ1
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where the eigenvectors {uj
i}3j=1 must be orthogonal to each other. Therefore, the diffusion processes for {ei}Ni=1 need to

model distributions in a product space of an orthogonal group O(3) and Euclidean group, not in the Euclidean space. Recent
work [11, 1] introduce diffusion models on Lie group or its product space, however, we empirically find that learning diffusion
without considering the orthogonality also performs well. It is ensured only at the test time by taking the projection of the
generated eigenvectors Ui = [u1

i ,u
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i ] to O(3) space. We follow Schönemann [16] and project Ui as
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where Ui = AΣBT is a singular value decomposition of Ui. We also clip negative eigenvalues in {λj
i}3j=1 to 1 × 10−4

since the covariance matrix is positive-definite.
We normalize elements of ei to avoid arbitrary high-variance latent space. Specifically, during the training of “Diffusion

of {ei}Ni=1”, we normalize πi and {λj
i}3j=1 using element-wise means and standard deviations pre-computed from all training

data. At test time, we re-scale these elements by the means and the standard deviations. We do not apply normalization to
the others.

The Transformer-based network of SALAD introduced in Section 4 of the main paper consists of an embedding layer,
which maps an input to 512-dimensional embeddings, and 6 Transformer blocks. Each Transformer block is a stack of a
self-attention block and an MLP, each of which is followed by an AdaLN layer. We set the dimension of the output of the
positional encoding γ(·) to 128.

As SALAD consists of two diffusion models, each trained for 5000 epochs, we train the baselines for 10,000 epochs
for a fair comparison. We use a batch size of 64 and an initial learning rate 10−4 with a polynomial decaying scheduler
(power=0.999). The diffusion process is configured with T = 1000, β(1) = 10−4, and β(T ) = 0.05.

S.3. Experiment Details

In this section, we provide details of the experiments whose results are reported in the main paper.

S.3.1 Details on Part Completion Experiment Setup — Section 5.2

As mentioned in Section 5.2 of the main paper, part completion via a guided reverse process [14] requires binary masks
indicating the parts to be ablated. We describe how such masks are constructed for SALAD and Neural Wavelet [8] in this
section.

SALAD. We define a binary mask m ∈ {0, 1}N for pairs {(ei, si)}Ni=1 to have value 0 at completed parts, 1 otherwise. To
this end, we first transfer the part labels of the annotated point clouds from ShapeNet [2] dataset to each (ei, si). Assume
a point cloud {(xj , lj)}Kj=1 of K points where xj ∈ R3 and lj ∈ {1, 2, . . . , L}, denote 3D coordinate and part label of
j-th point, respectively. Each (ei, si) is assigned a part label li ∈ {1, 2, . . . , L} based on the proximity of ei to the points
{xj}Kj=1. Since ei parameterizes a Gaussian distribution in 3D space, we employ Mahalanobis distance [13] as a distance
measure. For each Gaussian represented by ei, we compute the distance to every point xj and select the closest 100 points.
We then count the number of part label occurrences over the points and assign the most frequently occurred label to the pair.

Having assigned the part labels to each of {(ei, si)}Ni=1, we define a mask m selecting a part whose label is l as

mi =

{
0 if li = l

1 otherwise
, (2)

where mi denotes the i-th element of m.



Neural Wavelet [8]. Note that there is neither a publicly available official code nor detailed instructions for shape manipu-
lation using Neural Wavelet [8]. Although a concurrent work of ours, Hu et al. [7], demonstrates shape manipulation using
Neural Wavelet, it does not provide a detailed implementation.

Following Hui et al. [8], we derive the wavelet coefficients of the shapes in our training set. We compute signed distance
functions (SDFs) of the shapes and truncate their values into [−0.1, 0.1]. We denote S the resulting truncated signed distance
function (TSDF) of a shape. We leverage Biorthogonal wavelet-6-8 filter [3] to decompose S into a coarse wavelet coefficient
volume at a scale 3 (C3) and a detail wavelet coefficient volume at a scale 2 (D2). Refer to Hui et al. [8] for details on
preprocessing.

We then aim to derive binary masks for C3, necessary for leveraging pre-trained Neural Wavelet [8] for part completion.
Note that selecting a part to complete is a nontrivial task for a voxel-based representation adapted by Neural Wavelet, as
opposed to SALAD where we can define binary masks for {(ei, si)}Ni=1 to select parts directly. As one solution, we compute
bounding boxes enclosing semantic parts of 3D shapes, and use them to designate the regions to complete. Such bounding
boxes are used to compute binary masks for C3 via a heuristic based on the property of wavelet transforms extracting local
spectral information. Through experiments, we empirically find a set of wavelet coefficients that vary when the TSDF values
in a 3D volume are set to 0.1 (i.e.,outside of a shape). For instance, we set the TSDF values in the bounding box enclosing
the back of a chair to 0.1 to discover a set of wavelet coefficients corresponding to the part. We assign 0 to the coefficients
whose amount of change is above a threshold δ and 1 to the others.

Rigorously, let M ∈ {0, 1}2563 denote a binary voxel grid of the same resolution as S with 0 indicating the semantic part
of interest and 1 otherwise. Such M is derived from a bounding box enclosing a semantic part of a 3D shape, and is used to
derive a masked TSDF S∗ defined as

S∗
v =

{
0.1 if Mv = 0

Sv otherwise
, (3)

for all v ∈ {(0, 0, 0), (0, 0, 1), ..., (255, 255, 255)}. After marking all values inside a bounding box as outside, we obtain the
wavelet coefficients C3∗ via forward wavelet transform. A mask m for C3 is then defined as

mv′ =

{
0 if |C3∗

v′ − C3
v′ | > δ

1 otherwise
. (4)

for all v′ ∈ {(0, 0, 0), (0, 0, 1), ..., (47, 47, 47)}. Here, we use δ = 0.001.

ShapeFormer [17]. As discussed in Section 5.2 of the main paper, after constructing the axis-aligned bounding box of a
part, we make a partial point cloud by masking out the points inside the bounding box, and pass it to ShapeFormer [17] as an
input.

S.3.2 Details on Text-Guided Shape Generation — Section 5.4

Implementation Details of Text-Conditioned SALAD. We impose text conditions on both the first and the second phase
models by feeding text features from our text encoder. We use LSTM [6] for the text encoder and train it jointly with the first
and the second phase models. We also apply the classifier-free guidance [5]. More precisely, we jointly train a conditional
diffusion model ϵθ(x(t), t, c) and an unconditional diffusion model ϵθ(x(t), t,∅), where c denotes a condition feature vector
and ∅ is a null condition vector. We randomly set c to ∅ with a 20% dropout probability during training. To make ∅, we feed
an empty sequence as an input text and zero vectors for {E(ei)}Ni=1. c is solely a text feature for the first phase model. For
the second phase model conditioned on the features from extrinsic vectors {ei}Ni=1, we use the concatenation of the features
and a text feature as a condition.

At sampling time, the noise prediction is adjusted by an extrapolation between the noise prediction of the conditional
diffusion model and the unconditional diffusion model as follows:

ϵ̃t = (1 + w)ϵθ(x
(t), t, c)− wϵθ(x

(t), t,∅), (5)

where ϵ̃t is the noise prediction with the classifier-free guidance applied, and w is a hyperparameter controlling guidance
strength. We use w = 2 for sampling.



Experiment Setup. To measure Neural-Evaluator-Preference (NEP) discussed in Section 5.4 of the main paper, we lever-
age a modified PartGlot [10] for a neural evaluator. The modified architecture takes point clouds as inputs instead of super-
segments. Refer to the PartGlot [10] paper for more details. We adapt the training and test set of PartGlot [10] to create
binary classification examples. The modified PartGlot achieves 73.98% test accuracy on the binary classification. Following
Mittal et al. [15], we consider an example to be confused if the absolute difference between the neural evaluator’s confidence
is ≤ 0.2.

Back Seat Leg Arm Final
Segmentation

0

1

Figure S2: GAUSSGLOT qualitative results. The attention maps for each semantic part achieved by GAUSSGLOT are shown
in the left columns of the figure. The colors of the attention maps change from dark blue to yellow as the attention weights
increase from 0 to 1. The final part segmentation results are depicted in the rightmost column of the figure, where purple,
blue, green, and yellow indicate back, seat, leg, and arm, respectively.

S.3.3 Details on GaussGlot — Section 5.5

Inspired by Koo et al. [10], we design a text-driven self-supervised semantic part segmentation network, GAUSSGLOT,
where a set of Gaussian primitives is employed as super-segments. As discussed in Section 5.4 of the main paper, PartGlot is
a neural evaluator that classifies shapes from a query text. While solving this text-conditioned shape classification, PartGlot
learns semantic part segmentation in an unsupervised manner by learning the attention maps between the input text and
the super-segments. Refer to the PartGlot [10] paper for more details. Specifically, we train GAUSSGLOT with {ei}Ni=1

excluding πi elements which is inessential to define 3D Gaussian primitives. Based on the architecture of PartGlot, 15-
dimensional Gaussian parameters are mapped to 256-dimensional features through MLPs. We embed text tokens into 128
dimensions and use LSTM as a text encoder with 256-dimensional hidden states. Our trained GAUSSGLOT achieves 76.03%
test accuracy and 56.85% mIoU. Qualitative part segmentation examples and the attention maps of each semantic part from
GAUSSGLOT can be found in Figure S2.

S.4. Multi-Class Generation

We further demonstrate that SALAD is capable of multi-class generation. We construct the multi-class latent space by
pre-training SPAGHETTI [4] with a training data set consisting of 200 airplanes and 200 cars. Next, we train class-label-
conditioned SALAD with the latents extracted from the pre-trained SPAGHETTI. Figure S3 shows the same initial latents
are decoded into different class shapes, airplanes and cars, through the class-label-guided reverse process.

S.5. Shape Generation with More Classes

In the main paper, we used chairs and airplanes for the quantitative comparison as done in the previous work [8]. Figure S3
and Figure S4 show qualitative results of SALAD trained with more other classes, cars, lamps and cabinets.



Figure S3: Class-label-guided generation of SALAD trained with airplanes and cars.

Figure S4: Generation of lamps and cabinets.

8 parts 24 parts

Figure S5: Generation with varying number of parts.

S.6. Shape Generation with Different Number of Parts

Although we used 16 parts in the main paper, Figure S4 shows qualitative results of with varying number of parts, 8 and
24 parts, respectively. It demonstrates that SALAD is agnostic to the number of parts. Furthermore, the experiments of
Figure S3, Figure S4 and Figure S5 use 400 training shapes, a significantly smaller number than the train set of the main
paper. It demonstrates that SALAD can generate high-quality shapes with a small number of training data.



S.7. More Qualitative Comparisons on Shape Generation

In the following, we provide more qualitative comparisons on shape generation with chair and airplane classes, as shown
in Figure 4 of the main paper.
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S.8. More Qualitative Comparisons on Part Completion

We report more qualitative comparisons on part completion with chair and airplane classes, as shown in Figure 5 in the
main paper.

GT Bounding Box Gaussians ShapeFormer [17] Neural Wavelet [8] SALAD (Ours)



GT Bounding Box Gaussians ShapeFormer [17] Neural Wavelet [8] SALAD (Ours)



S.9. More Qualitative Results on Part Mixing and Refinement

We report more qualitative results on part mixing and refinement with chair, airplane and table classes, as shown in
Figure 6 in the main paper.

Shape A Shape B A→B A→B
Refined



Shape A Shape B A→B A→B
Refined



S.10. More Qualitative Comparisons on Text-Guided Shape Generation

We report more qualitative comparisons on text-guided shape generation between AutoSDF [15] and SALAD.

AutoSDF [15] SALAD (Ours)

“fat no legs.”

“thin/skinny legs with chair arms.”

“the target has very tiny arms.”

“with a narrow slat across my back.”

“round chair with round back.”

“curved top.”

“oval footrest.”

“wrap around curved back
narrow legs.”

“this chair is very tall with
skinny legs on it.”

AutoSDF [15] SALAD (Ours)

“curved solid back.”

“rounded back.”

“has an opening in the back
of the chair.”

“the one with the oval
shaped back.”

“the one that look most like
a lawn chair. net-like back.”

“dining room chair with
fancy holes in back.”

“regular looking back, no arms.”

“5 lines, with curve.”



S.11. More Qualitative Results on Text-Guided Part Completion

We report more qualitative results on text-guided part completion leveraging SALAD and GAUSSGLOT. In the figure
below, the parts selected by GAUSSGLOT from the text are highlighted by red. Text-conditioned SALAD completes the
selected parts to match the text via the guided reverse process.

Input Mesh Input
Gaussians

Output Mesh Output
Gaussians

Input Mesh Input
Gaussians

Output Mesh Output
Gaussians

“four legs and a straight back” “straight rectangular back”

“chair with no arms” “swivel legs”

“solid base and no leg” “round seat has arms and a circle base”

“thick legs and arms” “circular back”

“four thin legs” “it only has two legs”
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