
Appendix

A. Details on the Theoretical Evidence
A.1. Proof of Theorem 1

We adopt the settings of [54], with a slight modification of the assumption that sample-level local elasticity affects the
training dynamics instead of class-level local elasticity.

Consider the binary classification problem with two classes k = 1, 2 where class 1 consists of both certain (easy) and
uncertain (hard) samples and class 2 only consists of samples with the same certainty (easiness). Let S1,e, S1,h and S2

denote the easy samples from class 1, hard samples from class 1, and samples from class 2 respectively, which constitutes the
partition of the whole set of training samples S: S = S1,e ∪ S1,h ∪ S2. Let the corresponding sample sizes be n1,e = |S1,e|,
n1,h = |S1,h|, n2 = |S2| and n = |S| = n1,e + n1,h + n2, respectively.

At each iteration m, a training candidate sample Jm ∈ S with class Lm is sampled uniformly from the whole training set
S with replacement. Training using this sample Jm via SGD affects the training dynamics of other samples s ∈ S of class k
as:

Xk
s (m) = Xk

s (m− 1) + hEs,JmXLm

Jm
(m− 1) +

√
hζks (m− 1), (12)

where X > 0 is logit of the true label, h > 0 is the step size, ζ ∼ N (0, σ2) denotes the noise term arises during training,
and E ∈ R|S|×|S| refers to the sample-level local elasticity [17] where each entry Es,s′ measures the strength of the local
elasticity of s′ by s. For simplicity, we assume this local elasticity does not depend on the time step m. Furthermore, we
consider that the sample-level local elasticity only depends on the set S1,e, S1,h and S2 in which each samples are in.

Let
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be the averaged logits for certain samples in class 1, uncertain samples in class 1, and class 2 respectively.
Regarding the strength of local elasticity between “class” of samples, for some constants αe, αh and β, we set the value

of Es,s′ to model sample-level local elasticity for (1) between easy and hard samples in the class 1 and (2) between classes 1
and 2. We use the values αe > αh > β > 0 to define the easiness such that the power exerted by sample-level local elasticity
between easy samples are stronger for the pair of easy samples than for the pair consists of one or more hard sample.

• Es,s′ = αe if (s, s′) ∈ (S1,e × S1,e) ∪ (S2 × S2),

• Es,s′ = αh if (s, s′) ∈ (S1,e × S1,h) ∪ (S1,h × S1,e) ∪ (S1,h × S1,h) (either s ∈ S1,h or s′ ∈ S1,h),

• Es,s′ = β otherwise.

Intuitively, one can interpret the above assumption as easy samples being clustered with each other [22, 36], hence having
a stronger influence on each other due to the local elasticity. On the contrary, hard samples are often distant from other
same-class samples. Their influence is often limited, as memorizing is easy for the neural nets due to their large capacity
[53]. Finally, we ignore the influence of other class samples in this proof for simplicity, as we are only considering the logits
of the true label.

Theorem 1. (Formal) On average, the convergence speed of logit is faster for easy samples than hard samples. Formally:

dX̄1,e(t)
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>

dX̄1,h(t)

dt
. (14)

Proof. Fix a target sample s ∈ S , and execute the dynamics (12) r times since step m. Accumulated change for feature X
becomes

Xk
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where ϵ =
√
h
∑r

q=1 ζ
k
s (m+ q− 1) ∼ N (0, σ2rh) is the accumulated noise terms during r updates. Regarding terms inside

the summation, we can divide cases based on which sample Jr (with corresponding class Lr) is actually selected as a training
candidate at iteration ν(= m+ q):
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hence the summand from (15) becomes (omitting time index for X for simplicity)
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and for sufficiently large r we can approximate the summations as the sample-average dynamics:
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As the components of E only depend on the subset sample relies, we can rewrite accumulated dynamics of logits (15) for
three cases separately, utilizing the notation of averaged logit (13):
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with a little bit of abbreviated notation for class 1: X1,e
s = X1

s for easy sample s, and similarly for hard samples. The
differential counterpart of the above difference equation is
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where W s(t) is standard Wiener process per sample. Averaging each differential equation with respect to each set of samples
and ignoring error terms yield a set of simultaneous deterministic differential equations for averaged logits:
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To compare the convergence speed of average logit between certain and uncertain samples in the same class 1, observe
that

dX̄1,e(t)
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− dX̄1,h(t)

dt
=

n1,e

n
(αe − αh)X̄

1,e(t) > 0. (21)

With additional assumptions on the other class logits being the same, one can also conclude that the estimated probability
of the true label will increase steeply during training for the easy samples. After increasing to some extent, the probability
will saturate to one; hence the snapshot model predictions will contain less useful information than monitoring its training
dynamics. However, future work on extending the above theorem is needed. Starting from the basic idea above, that sample
proximity and its amount influence the training dynamics, one can further relax the above assumptions, such as concentrating
on the individuality of each sample or considering the changing elasticities during training. We hope our work ignites the
theoretical research on uncertainty from the viewpoint of training dynamics.



A.2. Proof of Theorem 2

We aim to show the effectiveness of the proposed estimators, entropy (Equation 2) and margin (Equation 3), especially in
the case where the probabilities converge. After training, it is commonly observed that the probabilities of the true label of
all the samples tend to converge to one, whereas the speed of the convergence differs (Theorem 1). Hence, we show that the
estimators can effectively discern the differences during training.

For each time step t during training, we have a sequence of predicted probabilities p(t)(y = c|x) corresponds to t, for
each target class c = 1, 2, · · · , C. In our paper, we regard the area under the predicted probability p̄(T )(y = c|x) of the
sample x as the training dynamics (Equation 5), which is indeed a well-known metric of area under the curve, except that it
is normalized properly to have value between 0 and 1. For convenience, let

s(x) =


s1(x)
s2(x)

...
sC(x)

 =


p̄(T )(y = 1|x)
p̄(T )(y = 2|x)

...
p̄(T )(y = C|x)


be the vector consisting the area under the prediction curve for each class up to final epoch T . By construction, the compo-
nents in s(x) are nonnegative and sum to 1.

Theorem 2. (Formal) Assume that all target classes have the same area under the prediction curve except for the true class
y. Suppose two training samples (x1, y1), (x2, y2) ∈ D satisfies

a. p(T )(y1|x1)=p(T )(y2|x2) (same predicted probability at the end of training)

b. 1
2 < sy1

(x1) < sy2
(x2) (but different TD, in terms of the area under the curve)

Then, the following inequalities hold:

1. H(s(x1)) > H(s(x2));

2. M(s(x1)) < M(s(x2)).

Proof. By the assumption, for all target class c except the true class y, the area under the prediction curve is given by
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C − 1
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and the corresponding entropy can be calculated as
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(23)

where H2(p) = −plogp− (1− p)log(1− p) stands for the binary entropy function. Since H2(p) is a decreasing function for
p > 1

2 ,
H(s(x1))−H(s(x2)) = {H2(sy1

(x1))−H2(sy2
(x2))}+ {sy2

(x2)− sy1
(x1)} log(C − 1) > 0,

which proves the first inequality stated.
The first assumption also gives the simplified formulation for the margin
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C

C − 1
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1
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, (24)

in whicn the second inequality directly follows:

M(s(x1))−M(s(x2)) =
C

C − 1
(sy1
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(x2)) < 0. (25)



While the final predicted probabilities p(T )(y|x) of the training samples tend to converge to 1 for the true class y, otherwise
0, their TD (in this case s(x) = p̄(T )) may be different depending on the easiness of the samples. Thus, the degree of the
easiness of the samples (i.e. uncertainty) could be captured from TD p̄, whereas the predictions p from a model snapshot
cannot.

B. Details on the Motivating Observation
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Figure 8: Training label distribution and accuracy curves for the motivating experiment in §3.1.

§3.1 empirically show that using TD is effective in separating uncertain samples from certain samples. Before diving into
the experimental details, we want to emphasize that it is difficult to control the level of data difficulty (or uncertainty). First
and foremost, human perception of data difficulty will be highly subjective and potentially different from its model counter-
part. This limitation hinders the quantitative analysis, and thus some previous works had to rely on qualitative substitutes
or analyze mislabeled samples which are impossible to control its difficulty [39, 35, 48]. Also, even if we could obtain
sample-wise difficulty, it is often nontrivial to analyze the overall trend during training due to sheer data size.

To avoid the two challenges above, we borrow the settings from studies on long-tail visual recognition [33, 7]. [8] show
that generalization error is bounded by the inverse square root of the dataset size. Further, many long-tail literature [33, 56, 19]
have also empirically shown that it is hard for the deep neural network-based model to train with fewer samples, showing
lower accuracy. Hence, we consider the major and minor classes as certain and uncertain classes, as the binned classification
error is often used as the definition of confidence [16].

We train ResNet-18 [18] on the CIFAR10 dataset [28, 8] with an imbalance ratio of 10 for 30 epochs using the Adam
optimizer [26]. Figure 8a shows the label distribution of the training dataset. Similar to [7], we choose classes 0, 1, 2, 3 and
4 as the major class and the rest as the minor class, randomly removing 90% of the training samples for the minor class. We
reduce the inter-class differences of CIFAR10 by merging five classes into one, and demonstrate both the overall distribution
and samplewise scores in Figure 2. We conclude that TD successfully captures data uncertainties, where its characteristics
are more helpful in separating uncertain samples from certain samples than the information obtained from a model snapshot.
Also, we empirically reaffirm that the major classes being more advantageous than minor classes in terms of accuracy during
model training (Figure 8b, 8c).

C. Details on the TD Prediction Module
One can offer numerous alternatives on the design of the TD prediction module m, but we adopt the architecture of the

loss prediction module [52] except for the last layer. By adopting the architecture used in the previous study, it is intended to
show that the performance improvement of TiDAL does not come from adopting an advanced prediction module architecture,
but from using TD. The TD prediction module takes several hidden feature maps extracted between the mid-level blocks of
the target classifier f as inputs. Through a global average pooling layer and a fully-connected layer, each feature map is
reduced to a fixed dimensional feature vector. All the reduced feature vectors are concatenated to take multi-level knowledge
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Figure 9: Averaged relative accuracy improvement curves and their 95% confidence interval (shaded) of AL methods over
the number of labeled samples on synthetically imbalanced datasets. We use the imbalance ratio (IR) of 100 on CIFAR10,
CIFAR100, and FashionMNIST.

of the target classifier into consideration for TD prediction. Using a single Softmax layer, the TD prediction module outputs
a C-dimensional prediction ỹ(t) ∈ [0, 1]C , which are used as the predicted TD.

For a better understanding of the architecture of our TD prediction module m, please refer to [52].

D. Additional Experiments

We conduct additional experiments to further demonstrate the effectiveness of our method, TiDAL. We provide the dataset
statistics in Table 1.

Table 1: Statistics of the dataset used for experiments.

Dataset # of classes # of samples Imbalance ratio

CIFAR10 10 50k {1, 10, 100}
CIFAR100 100 50k {1, 10, 100}
FashionMNIST 10 60k {1, 10, 100}
SVHN 10 73k 2.98
iNaturalist2018 8k 437k 500

D.1. Additional Results on Imbalanced Datasets

Figure 9 shows the experimental results on the imbalance ratio 100. Except for CIFAR10, our methods show superiority
over other state-of-the-art methods.

D.2. Additional Results on Absolute Accuracy

Figure 10 and 11 provides the absolute accuracy plots for the completeness of the evaluation for real and synthetic data,
respectively. We can observe the superiority of our method further on many of the settings.

D.3. Additional Baselines

Figure 12 compares our TiDAL with VAAL [45] and TA-VAAL [25]. Except for the case of CIFAR10 with the imbalance
ratio of 100, both TiDAL strategies excel in performance. Note that both VAAL and TA-VAAL use a semi-supervised
approach to train the selection module and further leverage the unlabeled data for training.
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Figure 10: Averaged absolute accuracy improvement curves and its 95% confidence interval (shaded) of AL methods over
the number of labeled samples on balanced and imbalanced datasets.

D.4. Variants of Training Dynamics-Aware Margin

We introduced two TD-aware strategies: entropy H̄ and margin M̄ , in §2. We further demonstrate various uncertainty
estimation strategies as follows:

M̄0(p̃m) = p̃m(ỹ|x)−max
c̸=ỹ

p̃m(c|x), (26)

P̄ (p̃m) = p̃m(ŷ|x), (27)
P̄0(p̃m) = p̃m(ỹ|x), (28)

where ỹ = argmaxc p̃m(c|x) is the class of the maximum module output.
M̂0 is the naive variant of the margin M̂ where it does not utilize the predicted label ŷ of the target classifier f . It calculates

the margin between the biggest and the second biggest outputs of the module m. P̄ uses the module output on the predicted
label ŷ from the target classifier f and P̄0 is the naive variant of P̄ that uses the maximum output of the module m.

Figure 13 shows the average accuracy of three runs for the entropy H̄ and margin M̄ , where we show the accuracy of a
single run for other strategies. We can observe that the naive variant of the margin M̄0 generally underperforms compared
to the margin M̄ except CIFAR100 with the imbalance ratio of 100. There seems to be no clear dominance between P̄ and
its naive variant P̄0. However, both P̄ and P̄0 perform moderately well on both CIFAR100 and FashionMNIST despite its
simplicity. Future studies may concentrate on broader query strategies based on various training dynamics and its module
predictions.



0.5k 1.5k 2.5k 3.5k 4.5k
# of labeled images

30

40

50

60

70

80

Ac
cu

ra
cy

 (%
)

CIFAR10 (IR 10)

Coreset
BALD
LLoss
Entropy

CAL
TiDAL (H)
TiDAL (M)

1k 3k 5k 7k 9k
# of labeled images

10

20

30

40

50

CIFAR100 (IR 10)

Coreset
BALD
LLoss
Entropy

CAL
TiDAL (H)
TiDAL (M)

0.5k 1.5k 2.5k 3.5k 4.5k
# of labeled images

70

75

80

85

90
FashionMNIST (IR 10)

Coreset
BALD
LLoss
Entropy

CAL
TiDAL (H)
TiDAL (M)

0.5k 1.5k 2.5k 3.5k 4.5k
# of labeled images

30

40

50

60

70

Ac
cu

ra
cy

 (%
)

CIFAR10 (IR 100)

Coreset
BALD
LLoss
Entropy

CAL
TiDAL (H)
TiDAL (M)

1k 3k 5k 7k 9k
# of labeled images

10

15

20

25

30

35

40

45
CIFAR100 (IR 100)

Coreset
BALD
LLoss
Entropy

CAL
TiDAL (H)
TiDAL (M)

0.5k 1.5k 2.5k 3.5k 4.5k
# of labeled images

55

60

65

70

75

80

85
FashionMNIST (IR 100)

Coreset
BALD
LLoss
Entropy

CAL
TiDAL (H)
TiDAL (M)

Figure 11: Averaged absolute accuracy improvement curves and their 95% confidence interval (shaded) of AL methods over
the number of labeled samples on synthetically imbalanced datasets. We use the imbalance ratio (IR) of 10 and 100 on
CIFAR10, CIFAR100, and FashionMNIST.
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Figure 12: Averaged relative accuracy improvement curves and their 95% confidence interval (shaded) of AL methods over
the number of labeled samples on balanced and synthetically imbalanced datasets. We use the imbalance ratio (IR) of 10 and
100 on CIFAR10, CIFAR100, and FashionMNIST to synthetically imbalance the dataset.
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Figure 13: Averaged relative accuracy improvement curves of different uncertainty estimation strategies over the number
of labeled samples on balanced and synthetically imbalanced datasets. We use the imbalance ratio (IR) of 10 and 100 on
CIFAR10, CIFAR100, and FashionMNIST to synthetically imbalance the dataset.


