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Introduction
This is the supplementary material, which is divided into the following sections.

1. More experiments are shown in Sec. 1.

2. Efficiency comparison is given in Sec. 2.

3. A memory-efficient implementation for RPE is introduced in Sec. 3.

4. We elaborate on the implementation details for the spatial distribution of the ground truths in Sec. 4.

5. We give more visualizations for the spatial distribution of the ground truths in Sec. 5.

6. More visual comparisons are shown in Sec. 6.

7. Limitation analysis and future work are shown in Sec. 7.

1. More Experiments
1.1. Effect of Different Weights on the Auxiliary Center Regression Task

weight mAP mAP50 mAP25

0.25 57.3 74.4 84.1
0.50 58.4 75.9 84.5
0.75 57.6 75.2 84.1
1.00 57.6 75.4 84.0

Table 1. Ablation study of the weights on the auxiliary center regression task.

As shown in Table 1, we analyze the effect of different weights on the auxiliary center regression task. It shows that the
performance is highest when setting the weight to 0.5.

1.2. Effect of Different Grid Sizes on the Relative Position Encoding

grid size (m) mAP mAP50 mAP25

0.025 57.6 74.7 83.3
0.05 57.5 75.3 83.7
0.1 58.4 75.9 84.5
0.2 58.1 75.8 84.2

Table 2. Ablation study of the weights on the auxiliary center regression task.

Also, we investigate the effect of different grid sizes on the relative position encoding (RPE) in Table 2. It reveals that
setting it to 0.1m performs best. This result indicates that setting the grid size too high may cause fine-grained information
to be lost, while setting it too low may lead to a small space covered by the RPE.



1.3. Random Initializing and Freezing the Position Queries During Training

Method mAP mAP50 mAP25

frozen 58.1 75.7 84.5
learnable 58.4 75.9 84.5

Table 3. Ablation on making the position queries learnable or frozen during training.

As shown in Table 3, we conduct an ablation study on making the position queries learnable or frozen during training. The
result shows that making them learnable only brings slight performance improvement. Given a random initialized position
queries, just freezing them works sufficiently well. This finding demonstrates the robustness of our method.

2. Efficiency Comparison

Method SPFormer Ours
Inference Time (ms) 72 69

Table 4. Efficiency comparison with the previous state-of-the-art method (e.g., SPFormer [1]). We randomly sample a scene from Scan-
Netv2 val set and list the inference time on a single RTX3090 GPU.

To show the superiority of our method, we compare the efficiency with previous work [1] as shown in Table 4. It is chosen
because it has achieved the best performance on ScanNetv2 val set so far. We randomly select a scene and compare the
inference time. The results show that our approach demonstrates inference speed on par with SPFormer.

3. A Memory-efficient Implementation of RPE
In Fig. 5 of the submission file, we illustrate the relative position encoding (RPE), where we utilize the relative positions

to obtain the integer indices r̂x, r̂y, r̂z ∈ Rn×N to look up the tables of position encoding tx, ty, tz ∈ RL×d, respectively.
We then sum them up to yield fpos ∈ Rn×N×d, which is followed by dot product with query features fq ∈ Rn×d or key
features fk ∈ RN×d to yield the final positional bias pos bias ∈ Rn×N . However, the resultant space complexity is

O(3× n×N × d) = O(3nNd), (1)

which is impractical for current hardware (i.e., GPUs) to accommodate.
Therefore, practically, we design a memory-efficient implementation for RPE. We first use the position encoding tables

tx, ty, tz ∈ RL×d to perform dot product with key features fk ∈ RN×d to yield positional bias tables t̃x, t̃y, t̃z ∈ RL×N .
(The same operation is for query features except that we yield positional bias tables of the shape RL×n.) We then let the
integer relative positions r̂x, r̂y, r̂z ∈ Rn×N to look up the positional bias tables respectively, and sum them up to obtain the
final positional bias pos bias ∈ Rn×N . The result is equivalent to that of the vanilla implementation, since

(tx[r̂x] + ty[r̂y] + tz[r̂z]) · fk = (tx · fk)[r̂x] + (ty · fk)[r̂y] + (tz · fk)[r̂z]. (2)

Compared to the vanilla implementation, it reduces the space complexity to

O(L×N × d) = O(LNd). (3)

In our setting, L is set to 48 while n can be several hundreds, therefore, we have

O(LNd) ≪ O(3nNd). (4)

4. Implementation Details of Spatial Distribution Visualization
As shown in Fig.6 in the submission file, we demonstrate the spatial distribution of the ground truths that are matched

to the same query. Specifically, we randomly choose 10 queries and record their matched ground truths at different training
iterations. Then, the three plots for each method are the x, y, and z-axis of the center coordinates of the matched ground
truths, respectively. The darker point denotes the later training iteration. It is worth noting that a query may often match no
ground truth at some training iterations. For this situation, we simply do not draw a scatter point for the query at that training
iteration. As a result, different queries may correspond to different numbers of scatter points.



5. More Spatial Distribution Visualizations
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Figure 1. More spatial distribution of ground truths that are matched to the same query at different training iterations. (a): Baseline. (b):
Ours. Top: the 1st epoch result. Middle: the 128th epoch result. Bottom: the 256th epoch result. We randomly select 10 object queries
and record their matched ground-truth instances in the early training. The three scatter plots for each method represent the center XYZ
coordinates of their matched ground-truth instances at different training iterations (the scatter points for a query correspond to different
training iterations)..

As shown in Fig. 1, we also show more spatial distribution visualizations (i.e., at the 128th and 256th epochs). It demon-
strates that the positional matching consistency is maintained in our method throughout the training. Even when training is
mature (e.g., 256th epoch), our approach still manifests more consistent matching results than the baseline model.

6. More Examples of Visual Comparison
As shown in Fig. 2, more examples of visual comparison are demonstrated. It is notable that our method tends to make

correct predictions on the semantic class of the instances. Moreover, our method is able to predict instances that are missed
with the baseline method. Again, they reveal the superiority of our approach consistently.
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Figure 2. Visual comparison between baseline and ours (best viewed in color and by zoom-in). GT: Ground Truth. Sem.: Semantic labels.
Inst.: Instance labels. The main difference is highlighted with a red bounding box. The bottom color map is for semantic labels.



7. Limitations and Future Work
Limitations. Firstly, since we employ initial position queries to match the corresponding ground-truth instances, this
pipeline works well for the instance-level tasks (e.g., instance segmentation), but it is hard to extend to point-level tasks
(e.g., semantic segmentation). Because there may be many instances for a single semantic class, and their center coordinates
make no sense. Secondly, the memory-efficient implementation of relative position encoding (RPE) relies on our customized
CUDA implementation, which needs further processing and optimization for practical use and deployment.

Furture work. Firstly, we plan to make our work extend to outdoor scenes (e.g., panoptic segmentation task) since currently
we only focus on the indoor scenario. Moreover, we will optimize the CUDA implementation for RPE with more advanced
techniques including shared memory, coalesced memory, etc.
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