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1. Appendix

1.1. Full Result Tables

We include tables for VisDA-2017 [20] (Tab. 4), Office-
31 [23] (Tab. 7), Office-Home [26] (Tab. 5), DomainNet
[19] (Tab. 6) from section 5.2 (External Comparison). Note
that PMTrans [36] was available after our submission.

1.2. Generalization of Our Method

Few-shot learning. Our method preserves CLIP’s few-
shot learning ability because we did not modify CLIP’s ar-
chitecture (no extra layers on top of any representations).
To test our method, we setup a fair ablation study in the
setting of ResNet-101 on ImageNet 16 shots (no UDA
datasets were used). Tab. 1 shows that we outperform few-
shot CLIP methods: Tip-Adapter-F [34] (+0.5%), CLIP-
Adapter [8] (+3.6%), and CoOP [35] (+2.4%). For UDA,
we perform DomainNet 16-shot (8 source, 8 target images)
with CFM on CLIP and improve accuracy from zero-shot
setting by +2.6% (Tab. 2).

Incremental learning. Our method works on incremental
learning. We follow Split CIFAR-100 [1] (20 disjoint sub-
sets and each subset was randomly sampled from 5 classes
without a replacement from a total of 100 classes) to eval-
uate the incremental learning accuracy (average accuracy
over each step of adding a subset for 20 subsets). Tab. 3
shows that CLIP suffers from catastrophic forgetting (accu-
racy -9.9%) and CFM can mitigate it (accuracy +5.3%).

Domain Generalization. Our methods prevent catas-
trophic forgetting in Domain Generalization. Tab. 8 shows
that CLIP suffers from catastrophic forgetting issues (-
14.0% accuracy when fine-tuning on all DomainNet do-
mains except “Painting” and test on “Painting”) and CFM
can mitigate it (accuracy +2.4%).

*Equal contributions. This work was done at Amazon.

1.3. Fine-tuning the whole vs partial network

Fine-tuning partial EVACLIP can achieve a similar ef-
fect to lowering the learning rate which can both mitigate
catastrophic forgetting. However, fine-tuning partial net-
work also decreases model capacity (many parameters are
not learnable), which leads to lower accuracy. Whole model
fine-tuning is slower to train, but we chose the whole model
to not limit ourselves to the lower model capacity and intro-
duce CFM and DCM to mitigate catastrophic forgetting.

Table 1: Classification accuracy on few-shot ImageNet [3]
with ResNet-101.

Methods Shot Accuracy

CLIP [21] 0 62.53%
CLIP + CoOp [35] 16 66.60%
CLIP-Adapter [8] 16 65.39%
Tip-Adapter [34] 16 64.78%

Tip-Adapter-F [34] 16 68.56%
Ours 16 69.01%

Table 2: Classification accuracy on few-shot DomainNet [3]
(16-shot: 8 source and 8 target images) with ViT-B.

Methods Accuracy

Zero-shot CLIP [21] 56.6%
Ours: 16-shot CLIP with CFM 59.2 %

Ours: fine-tuned full dataset (for reference) 63.7%

Table 3: Incremental learning accuracy on Split CIFAR-100
[1] with ResNet-50.

Methods Accuracy

Zero-shot CLIP [21] 84.8%
Fine-tuned without CFM 74.9 %

Ours: Fine-tuned with CFM 90.1%



Table 4: Accuracies (%) on VisDA-2017. ∗CDTrans uses DeiT-base backbone. “-B” indicates ViT-B backbone.

Method plane bcycl bus car horse knife mcycl person plant sktbrd train truck Avg.

RN-101 [10] 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4
DANN [6] 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4
CDAN [18] 85.2 66.9 83.0 50.8 84.2 74.9 88.1 74.5 83.4 76.0 81.9 38.0 73.9
SAFN [29] 93.6 61.3 84.1 70.6 94.1 79.0 91.8 79.6 89.9 55.6 89.0 24.4 76.1
SWD [13] 90.8 82.5 81.7 70.5 91.7 69.5 86.3 77.5 87.4 63.6 85.6 29.2 76.4
CaCo [11] 90.4 80.7 78.8 57.0 88.9 87.0 81.3 79.4 88.7 88.1 86.8 63.9 80.9
SUDA [33] 91.5 79.7 71.9 66.5 88.5 81.1 85.6 79.5 86.2 86.5 79.9 74.3 80.9
DTA [14] 93.7 82.2 85.6 83.8 93.0 81.0 90.7 82.0 95.1 78.1 86.4 32.1 81.5
CGDM [5] 93.4 82.7 73.2 68.4 92.9 94.5 88.7 82.1 93.4 82.5 86.8 49.2 82.3
SHOT [16] 94.3 88.5 80.1 57.3 93.1 94.9 80.7 80.3 91.5 89.1 86.3 58.2 82.9
MCC+NWD [2] 96.1 82.7 76.8 71.4 92.5 96.8 88.2 81.3 92.2 88.7 84.1 53.7 83.7
SDAT [22] 95.8 85.5 76.9 69.0 93.5 97.4 88.5 78.2 93.1 91.6 86.3 55.3 84.3
MSGD [28] 97.5 83.4 84.4 69.4 95.9 94.1 90.9 75.5 95.5 94.6 88.1 44.9 84.6
CAN [12] 97.0 87.2 82.5 74.3 97.8 96.2 90.8 80.7 96.6 96.3 87.5 59.9 87.2
AaD [32] 97.4 90.5 80.8 76.2 97.3 96.1 89.8 82.9 95.5 93.0 92.0 64.7 88.0
Ours (RN-101) 96.7 88.8 87.0 82.8 97.1 93.0 91.3 83.0 95.5 91.8 91.5 63.0 88.5

ViT-B [4] 99.1 60.7 70.6 82.7 96.5 73.1 97.1 19.7 64.5 94.7 97.2 15.4 72.6
TVT-B [31] 92.9 85.6 77.5 60.5 93.6 98.2 89.4 76.4 93.6 92.0 91.7 55.7 83.9
SHOT-B [30] 97.9 90.3 86.0 73.4 96.9 98.8 94.3 54.8 95.4 87.1 93.4 62.7 85.9
CDTrans∗ [30] 97.1 90.5 82.4 77.5 96.6 96.1 93.6 88.6 97.9 86.9 90.3 62.8 88.4
SSRT-B [25] 98.9 87.6 89.1 84.8 98.3 98.7 96.3 81.1 94.9 97.9 94.5 43.1 88.8
SDAT-B [22] 98.4 90.9 85.4 82.1 98.5 97.6 96.3 86.1 96.2 96.7 92.9 56.8 89.8
PMTrans [36] 98.9 93.7 84.5 73.3 99.0 98.0 96.2 67.8 94.2 98.4 96.6 49.0 87.5
Ours-B 98.1 93.8 87.1 85.5 98.0 96.0 94.4 86.0 94.9 93.3 93.5 70.2 90.9

Table 5: Accuracies (%) on Office-Home. ∗CDTrans uses DeiT-Base backbone. “-B” indicates ViT-B backbone.

Method Ar�Cl Ar�Pr Ar�Rw Cl�Ar Cl�Pr Cl�Rw Pr�Ar Pr�Cl Pr�Rw Rw�Ar Rw�Cl Rw�Pr Avg.

RN-50 [10] 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
CDAN+E [18] 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
SAFN [29] 52.0 71.7 76.3 64.2 69.9 71.9 63.7 51.4 77.1 70.9 57.1 81.5 67.3
CDAN+TN [27] 50.2 71.4 77.4 59.3 72.7 73.1 61.0 53.1 79.5 71.9 59.0 82.9 67.6
FGDA+MDD [9] 57.1 77.5 81.0 68.4 77.2 75.9 65.8 55.8 81.0 74.3 60.5 83.6 71.5
SHOT [16] 57.1 78.1 81.5 68.0 78.2 78.1 67.4 54.9 82.2 73.3 58.8 84.3 71.8
SDAT [22] 58.2 77.1 82.2 66.3 77.6 76.8 63.3 57.0 82.2 74.9 64.7 86.0 72.2
MSGD [28] 58.7 76.9 78.9 70.1 76.2 76.6 69.0 57.2 82.3 74.9 62.7 84.5 72.4
MCC+NWD [2] 58.1 79.6 83.7 67.7 77.9 78.7 66.8 56.0 81.9 73.9 60.9 86.1 72.6
AaD [32] 59.3 79.3 82.1 68.9 79.8 79.5 67.2 57.4 83.1 72.1 58.5 85.4 72.7
CST [17] 59.0 79.6 83.4 68.4 77.1 76.7 68.9 56.4 83.0 75.3 62.2 85.1 73.0
DCAN+SCDA [15] 60.7 76.4 82.8 69.8 77.5 78.4 68.9 59.0 82.7 74.9 61.8 84.5 73.1
KUDA [24] 58.2 80.0 82.9 71.1 80.3 80.7 71.3 56.8 83.2 75.5 60.3 86.6 73.9
Ours (RN-50) 57.5 84.0 83.8 77.8 85.5 84.7 76.3 59.2 85.4 78.1 60.2 86.7 76.6

ViT-B [4] 54.7 83.0 87.2 77.3 83.4 85.5 74.4 50.9 87.2 79.6 53.8 88.8 75.5
SHOT-B [30] 67.1 83.5 85.5 76.6 83.4 83.7 76.3 65.3 85.3 80.4 66.7 83.4 78.1
CDTrans∗ [30] 68.8 85.0 86.9 81.5 87.1 87.3 79.6 63.3 88.2 82.0 66.0 90.6 80.5
TVT-B [31] 74.9 86.8 89.5 82.8 88.0 88.3 79.8 71.9 90.1 85.5 74.6 90.6 83.6
SDAT-B [22] 70.8 87.0 90.5 85.2 87.3 89.7 94.1 70.7 90.6 88.3 75.5 92.1 84.3
SSRT-B [25] 75.2 89.0 91.1 85.1 88.3 89.9 85.0 74.2 91.3 85.7 78.6 91.8 85.4
PMTrans [36] 81.2 91.6 92.4 88.9 91.6 93.0 88.5 80.0 93.4 89.5 82.4 94.5 88.9
Ours-B 76.4 90.6 90.8 86.7 92.3 92.0 86.0 74.5 91.5 86.9 79.1 93.1 86.7
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Table 6: Accuracies (%) on DomainNet. In each sub-table, the column-wise means source domain and the row-wise means
target domain. “-B” indicates ViT-B (except CDTrans uses DeiT).

ResNet-
101 [10] clp inf pnt qdr rel skt Avg. MIMTFL

[7] clp inf pnt qdr rel skt Avg. CDAN [18] clp inf pnt qdr rel skt Avg.

clp - 19.3 37.5 11.1 52.2 41.0 32.2 clp - 15.1 35.6 10.7 51.5 43.1 31.2 clp - 20.4 36.6 9.0 50.7 42.3 31.8
inf 30.2 - 31.2 3.6 44.0 27.9 27.4 inf 32.1 - 31.0 2.9 48.5 31.0 29.1 inf 27.5 - 25.7 1.8 34.7 20.1 22.0
pnt 39.6 18.7 - 4.9 54.5 36.3 30.8 pnt 40.1 14.7 - 4.2 55.4 36.8 30.2 pnt 42.6 20.0 - 2.5 55.6 38.5 31.8
qdr 7.0 0.9 1.4 - 4.1 8.3 4.3 qdr 18.8 3.1 5.0 - 16.0 13.8 11.3 qdr 21.0 4.5 8.1 - 14.3 15.7 12.7
rel 48.4 22.2 49.4 6.4 - 38.8 33.0 rel 48.5 19.0 47.6 5.8 - 39.4 32.1 rel 51.9 23.3 50.4 5.4 - 41.4 34.5
skt 46.9 15.4 37.0 10.9 47.0 - 31.4 skt 51.7 16.5 40.3 12.3 53.5 - 34.9 skt 50.8 20.3 43.0 2.9 50.8 - 33.6

Avg. 34.4 15.3 31.3 7.4 40.4 30.5 26.6 Avg. 38.2 13.7 31.9 7.2 45.0 32.8 28.1 Avg. 38.8 17.7 32.8 4.3 41.2 31.6 27.7

MDD+
SCDA [15] clp inf pnt qdr rel skt Avg. ViT-B [4] clp inf pnt qdr rel skt Avg. CD-

Trans [30] clp inf pnt qdr rel skt Avg.

clp - 20.4 43.3 15.2 59.3 46.5 36.9 clp - 27.2 53.1 13.2 71.2 53.3 43.6 clp - 29.4 57.2 26.0 72.6 58.1 48.7
inf 32.7 - 34.5 6.3 47.6 29.2 30.1 inf 51.4 - 49.3 4.0 66.3 41.1 42.4 inf 57.0 - 54.4 12.8 69.5 48.4 48.4
pnt 46.4 19.9 - 8.1 58.8 42.9 35.2 pnt 53.1 25.6 - 4.8 70.0 41.8 39.1 pnt 62.9 27.4 - 15.8 72.1 53.9 46.4
qdr 31.1 6.6 18.0 - 28.8 22.0 21.3 qdr 30.5 4.5 16.0 - 27.0 19.3 19.5 qdr 44.6 8.9 29.0 - 42.6 28.5 30.7
rel 55.5 23.7 52.9 9.5 - 45.2 37.4 rel 58.4 29.0 60.0 6.0 - 45.8 39.9 rel 66.2 31.0 61.5 16.2 - 52.9 45.6
skt 55.8 20.1 46.5 15.0 56.7 - 38.8 skt 63.9 23.8 52.3 14.4 67.4 - 44.4 skt 69.0 29.6 59.0 27.2 72.5 - 51.5

Avg. 44.3 18.1 39.0 10.8 50.2 37.2 33.3 Avg. 51.5 22.0 46.1 8.5 60.4 40.3 38.1 Avg. 59.9 25.3 52.2 19.6 65.9 48.4 45.2

PMTrans
[36] clp inf pnt qdr rel skt Avg. SSRT

-B [25] clp inf pnt qdr rel skt Avg. Ours
-B clp inf pnt qdr rel skt Avg.

clp - 34.2 62.7 32.5 79.3 63.7 54.5 clp - 33.8 60.2 19.4 75.8 59.8 49.8 clp - 73.6 75.4 74.6 76.4 76.3 75.3
inf 67.4 - 61.1 22.2 78.0 57.6 57.3 inf 55.5 - 54.0 9.0 68.2 44.7 46.3 inf 55.1 - 54.3 53.6 54.9 54.9 54.6
pnt 69.7 33.5 - 23.9 79.8 61.2 53.6 pnt 61.7 28.5 - 8.4 71.4 55.2 45.0 pnt 71.1 70.6 - 70.0 72.7 71.7 71.2
qdr 54.6 17.4 38.9 - 49.5 41.0 40.3 qdr 42.5 8.8 24.2 - 37.6 33.6 29.3 qdr 36.8 18.0 32.0 - 31.7 34.9 30.7
rel 74.1 35.3 70.0 25.4 - 61.1 53.2 rel 69.9 37.1 66.0 10.1 - 58.9 48.4 rel 84.2 83.5 83.5 83.1 - 83.6 83.6
skt 73.8 33.0 62.6 30.9 77.5 - 55.6 skt 70.6 32.8 62.2 21.7 73.2 - 52.1 skt 68.1 66.6 67.2 66.1 67.5 - 67.1

Avg. 67.9 30.7 59.1 27.0 72.8 56.9 52.4 Avg. 60.0 28.2 53.3 13.7 65.3 50.4 45.2 Avg. 63.1 62.5 62.5 69.5 60.6 64.3 63.7

Table 7: Accuracies (%) on Office-31.

Method A�W D�W W�D A�D D�A W�A Avg.

RN-50 [10] 68.4 96.7 99.3 68.9 62.5 60.7 76.1
DANN [6] 82.0 96.9 99.1 79.7 68.2 67.4 82.2
SAFN+ENT [29] 90.1 98.6 99.8 90.7 73.0 70.2 87.1
SUDA [33] 90.8 98.7 100.0 91.2 72.2 71.4 87.4
CaCo [11] 89.7 98.4 100.0 91.7 73.1 72.8 87.6
SHOT [16] 90.1 98.4 99.9 94.0 74.7 74.3 88.6
CDAN+TN [27] 95.7 98.7 100. 94.0 73.4 74.2 89.3
MDD+SCDA [15] 95.3 99.0 100. 95.4 77.2 75.9 90.5

ViT-B [4] 91.2 99.2 100. 90.4 81.1 80.6 90.4
SHOT-B [16] 94.3 99.0 100. 95.3 79.4 80.2 91.4
CDTrans∗ [30] 96.7 99.0 100. 97.0 81.1 81.9 92.6
SSRT-B [25] 97.7 99.2 100. 98.6 83.5 82.2 93.5
TVT-B [31] 96.4 99.4 100. 96.4 84.9 86.1 93.8
PMTrans [36] 99.1 99.6 100.0 99.4 85.7 86.3 95.0
Ours-B 97.9 99.2 100. 98.5 84.6 85.3 94.3

Table 8: Classification accuracy on DomainNet [3] with
ViT-B for Domain Generalization (train on all domains ex-
cept “Painting”, and test on “Painting”).

Methods Accuracy

Zero-shot CLIP [21] 69.6%
Fine-tuned without CFM 55.6%

Ours: Fine-tuned with CFM 72.0%
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