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We first provide examples from all the camouflage datasets included in our study in Section A. Next, we present a class

analysis in Section B. In Section C, we present more results of ranking camouflage datasets and compare the rankings

obtained by the different scores in terms of kendall-τ metric [6]. Then in Section D, we present examples of the camouflage

image and mask pairs generated via our proposed Generative Adversarial Networks setting with and without training with

the LF loss term as well as examples of the generated synthetic camouflage sequences. Finally, in Section E, we provide a

detailed description of our model’s architecture and show qualitative results of our motion segmentation model trained on the

synthetic dataset.
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A. Camouflage Datasets

We provide random samples of the camouflage benchmarks included in our study in Fig. 1. Further examples of our

synthetically generated camouflage datasets are shown in Fig. 8 and Fig. 9.



Figure 1: Randomly sampled examples from the camouflage datasets included in our work. For the video datasets,

Camouflaged Animals and MoCA-mask, we show an example sequence. For the multiple-view dataset Camouflaged cuboids

(bottom), we show example views from two scenes of the 4-view texture synthesis method from [5].
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B. Class Analysis on COD10K

We compute our scores for each of the classes from COD10K [4] and report the results in Tab. 1. Overall, the highest

scored examples, according to our Sα, were from the Aquatic class. We found the Stingaree subclass camouflage to be the

most effective in terms of background matching, SRf
=0.885, and the worst in terms of boundary visibility. The Best subclass

for the boundary score is the Lion Sb=0.502 followed by the caterpillar Sb=0.492.

Classes SRf
↑ Sb ↑ Sα↑

Aquatic 0.711 0.427 0.612

Terrestrial 0.599 0.443 0.545

Flying 0.668 0.426 0.584

Amphibian 0.678 0.432 0.592

Other 0.606 0.439 0.548

Best subclass Stingaree(0.885) Lion (0.502) Flounder (0.725)

Worst subclass Ant (0.294) Stingaree (0.391) Ant (0.347)

Table 1: Results per class from COD10K [4]. SRf
stands for the

reconstruction fidelity score, Sb stands for the boundary score

and Sαstands for the combined perceptual score.

C. Ranking Camouflage Images

We present, in this section, examples of highest and lowest scored images and sequences from the camouflage datasets

with respect to the different proposed camouflage assessment scores and we further report their pairwise correlations in terms

of the kendall-τ metric [6].

C.1. Correlation of the proposed score rankings

In this section, we present the results of comparison of the ranking obtained using our scores in terms of kendall-τ metric,

on CAMO [9] in Tab. 2, COD10K [4] in Tab. 3, MoCA-Mask [8, 3] in Tab. 4, CHAMELEON [10] in Tab. 6, Camouflaged

Animals [1] in Tab. 5. Note that we have inverted the rankings obtained with the dF distance for consistency with the

other score rankings. With our choice for α = 0.35, therefore privileging reconstruction fidelity over boundary score, Sαis

correlated with SRf
. Our proxi score d2

F
shows correlation with Sαon COD10k and MoCA-Mask with the highest correlation

on Camouflaged Animals τ = 0.245.

Rankings SRf
Sb Sα d2F

SRf
1 0.012 0.035 -0.014

Sb 0.012 1 0.012 0.002

Sα 0.035 0.012 1 -0.040

d2F -0.014 0.002 -0.040 1

Table 2: Kendall-τ of rankings of CAMO [9]

Rankings SRf
Sb Sα d2F

SRf
1 0.0 0.004 0.003

Sb 0.0 1 0.007 -0.010

Sα 0.004 0.007 1 0.013

d2F 0.003 -0.010 0.013 1

Table 3: Kendall-τ of rankings of COD10K [4]
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Rankings SRf
Sb Sα d2F

SRf
1 0.083 0.102 0.097

Sb 0.083 1 0.081 0.057

Sα 0.102 0.081 1 0.091

d2F 0.097 0.057 0.091 1

Table 4: Kendall-τ of rankings of MoCA-Mask [8, 3]

Rankings SRf
Sb Sα d2F

SRf
1 0.291 0.349 0.229

Sb 0.291 1 0.287 0.343

Sα 0.349 0.287 1 0.245

d2F 0.229 0.343 0.245 1

Table 5: Kendall-τ of rankings of Camouflaged Animals [1]

Rankings SRf
Sb Sα d2F

SRf
1 -0.032 0.067 -0.084

Sb -0.032 1 -0.057 -0.076

Sα 0.067 -0.057 1 -0.015

d2F -0.084 -0.076 -0.015 1

Table 6: Kendall-τ of rankings of CHAMELEON [10]
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C.2. Example of ranked images

We present the rankings of COD10K in Fig. 2 and Fig. 3, for MoCA-Mask in Fig. 4 and Fig. 5 and for CAMO in Fig. 6

and Fig. 7.

Figure 2: Top scored examples from COD10K. From top to bottom: SRf , Sb, Sα and d2
F

rankings. For each image, we

show the corresponding groundtruth mask and the computed score.
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Figure 3: Lowest scored examples from COD10K. From top to bottom: SRf , Sb, Sα and d2
F

rankings. For each image, we

show the corresponding groundtruth mask and the computed score.
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Figure 4: Top scored examples from MoCA-Mask. From top to bottom: SRf , Sb, Sα and d2
F

rankings. For each frame,

we show the corresponding groundtruth mask and the computed score.
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Figure 5: Lowest scored examples from MoCA-Mask. From top to bottom: SRf , Sb, Sα and d2
F

rankings. For each frame,

we show the corresponding groundtruth mask and the computed score.
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Figure 6: Top scored examples from CAMO. From top to bottom: SRf , Sb, Sα and d2
F

rankings. For each image, we show

the corresponding groundtruth mask and the computed score.
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Figure 7: Lowest scored examples from CAMO. From top to bottom: SRf , Sb, Sα and d2
F

rankings. For each frame,

we show the corresponding groundtruth mask and the computed score. While CAMO is a single image dataset, we found

multiple images of a red bird with low SRf
and Sαscores. Note that these are not part of a sequence.
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D. Synthetic Camouflage Dataset

In this section, we present samples of the synthetically generated camouflage images using our trained generative model

and we provide examples of the created video sequences.

D.1. Example of generated image samples

We present in Fig 8 an example of image and mask samples created using our trained generator. When comparing

generated samples, we notice a significant improvement of the visual blending of the animal with its background as a result

of training the generator with additional intra-image FrÂechet loss term.

Figure 8: Generated camouflage image and mask samples: For the images on the right, the generator was trained using

additional LF auxiliary loss.

D.2. Example of generated sequences

Fig. 9 presents examples of generated camouflaged animals sequences. We use translational motion and incorporate static

subsequences.
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Figure 9: Example of generated camouflage sequences. Ia denotes a sequence of RGB images and Im the corresponding

optical flow sequence.
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E. Moving Camouflaged Animal Segmentation

E.1. Model architecture

We detail our motion network architecture in Tab. 7. We build on the motion segmentation architecture [7] that takes

a sequence T = 5 of optical flow frames and uses spatio-temporal self-attention to learn motion features. The output of

the transformer encoder is fed to a pixel decoder with skip connections and further aggregated with motion features via a

transformer decoder described in Tab. 8. The adopted architecture for the appearance encoder, i.e. SINetV2 [4] is described

in Tab. 8. Based on a ResNet50 backbone, this architecture incorporates three levels of resolution: Low-level features

(d = 512), Mid-level-features (d = 1024), and High level features (d = 2048). Each feature range is processed by a residual

convolutional block. Note that we have omitted the kernel sizes for simplicity. In each residual block, kernel sizes are

gradually increased k ∈ {1, 3, 5, 7}. To aggregate the appearance and motion features, we use a Transformer Decoder with

learnable query features and masked attention [2]. The final predicted mask is obtained by multiplying the outputs of linear 2

and conv 2.

stage operation output sizes

input ± T × 3× 256× 256

M
o

ti
o

n
E

n
co

d
er

conv1 [3× 3, 64] × 2 T × 64× 256× 256
mp1 maxpool, stride = 2 T × 64× 128× 128
conv2 [3× 3, 128] × 2 T × 128× 128× 128
mp2 maxpool, stride = 2 T × 128× 64× 64
conv3 [3× 3, 256] × 2 T × 256× 64× 64
mp3 maxpool, stride = 2 T × 256× 32× 32
conv4 [3× 3, 512] × 2 T × 512× 32× 32
mp4 maxpool, stride = 2 T × 512× 16× 16
conv5 [3× 3, 512] × 2 T × 512× 16× 16

T
ra

n
sf

o
rm

er
E

n
co

d
er

tpos Embedding [T × 512] 512× T

xpos Embedding [16× 512] 512× 16
ypos Embedding [16× 512] 512× 16

transEnc
input = 512, nl=3

nh=8,fwd=1024
(T × 16× 16)× 512

D
ec

o
d

er

conv1 [3× 3, 512] × 2 T × 512× 16× 16
convT 1 3× 3, 256, stride = 2 T × 256× 32× 32
conv2 [3× 3, 256] × 2 T × 256× 32× 32
convT 2 3× 3, 128, stride = 2 T × 128× 64× 64
conv3 [3× 3, 128] × 2 T × 128× 64× 64
convT 3 3× 3, 64, stride = 2 T × 64× 128× 128
conv4 [3× 3, 64] × 2 T × 64× 128× 128
convT 4 3× 3, 64, stride = 2 T × 64× 256× 256

Table 7: Architecture of the Motion Network. In this work, we adopt a ConvNet as motion encoder, and use Transformer

Encoder for aggregating the motion temporal information along T = 5 frames, followed by ConvNet-based decoder to

recover the resolution, similarly to [7]. Unless specified otherwise, all convolution layers have stride = 1 and padding = 1.
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stage operation output sizes

input ± T × 3× 256× 256

Backbone ResNet50 T × 512× 32× 32
T × 1024× 16× 16
T × 2048× 8× 8

res block 1
[

conv, 32
]

× 15 T × 32× 32× 32

res block 2
[

conv, 32
]

×15 T × 32× 16× 16

A
p

p
ea

ra
n

ce
E

n
co

d
er

res block 3
[

conv, 32
]

× 15 T × 32× 8× 8

conv block 1


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



















[

Upsample

conv, 32

]

× 4

[

conv, 64
]

× 2

[

conv, 96
]

× 2

conv, 1

























× 1 T × 1× 32× 32

conv block 2









Upsample

conv, 32
conv, 1



× 3



× 3 T × 4× 256× 256

T
ra

n
sf

o
rm

er
D

ec
o

d
er conv 1 1 [1× 1, 512] × 3 T × 512× 256× 256

transDec
input = 512, nl=3

nh=8,fwd=2048
512× 1

queryfeat Embedding [1× 512] 512× 1

querypos Embedding [1× 512] 512× 1

linear [512] × 2 512× 1
linear 2 [256] 256× 1
conv 2 [3× 3, 256] T × 256× 256× 256

Table 8: Architecture of the appearance Network and aggregation. We adopt a SINetV2 [4] architecture for encoding

appearance. For aggregating the appearance and motion features, we use a Transformer Decoder with learnable query features

and masked attention [2]. The final predicted mask is obtained by multiplying the outputs of linear 2 and conv 2.
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E.2. Qualitative results

We show in Fig. 10 qualitative results of our motion segmentation network. Our model learns motion and appearance cues

from the synthetically generated dataset in order to segment the moving camouflaged animal. Note that our model is able to

provide accurate segmentations even in the presence of degraded optical flow, e.g. the first sequence, or static animal with

respect to the background, e.g. the momentarily static stick insect depicted in the second sequence and the partially static

flower crab spider in the third sequence.
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Figure 10: Results of our motion segmentation model on sequences from the test subset of MoCA-Mask. Our model

takes as input a sequence of RGB images denoted Ia and a sequence of optical flow Im and predicts segmentation masks of

the moving camouflaged animal.
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