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Abstract
In the main part of the paper, we introduced SeeABLE, a

novel state-of-the-art deepfake detector learned in a one-
class learning setting. We evaluated the proposed de-
tector in rigorous experiments in cross-dataset and cross-
manipulation scenarios over multiple datasets and in com-
parison to 12 state-of-the-art competitors, and presented
a number of ablation studies to demonstrate the impact of
various model components. In this supplementary material,
we now provide: (i) additional technical details on See-
ABLE, related to: (a) the definition of the evenly distributed
prototype used with the Bounded Contrastive Regression
(BCR), and (b) the geometric constraints used with the aux-
ilary guidance loss, (ii) visual examples of the generated
local image perturbations (i.e., the soft discrepancies) in
the spatial and frequency domain, (iii) additional abla-
tions, (iv) qualitative results with examples of face images
generated diffusion-based (generative) models, and (v) in-
formation on the reproducibility of SeeABLE with links to
relevant (open-access) repositories.

1. Hard-prototype generation
The main idea behind SeeABLE is to generate local im-

age perturbations (soft discrepancies) and then map the dif-
ferent perturbations to a set of so-called hard-prototypes
that can later be used to derive an anomaly score for deep-
fake detection. One of the key components in this frame-
work are the hard-protoypes, which are defined in a way that
ensures that they are evenly (i.e., equidistantly) distributed
on an n-dimensional hypercube. This setup not only re-
sults in an optimal separability between the different proto-
types (in terms of average between prototype distance), but
also leads to highly desirable characteristics when used with
contrastive learning objectives, as theoretically and empiri-
cally demonstrated in [2].

In SeeABLE, we compute the hard prototypes in accor-
dance with the algorithm from [5]. Here, the n-dimensional

prototypes {p1 . . .pK}, for K ∈ [2, . . . , n+1], which serve
as the targeted optimal representation of the generated soft
discrepancies, are defined as vertices of a regular simplex,
i.e.:
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where 1 ∈ Rn is a vector of all ones and ei−1 is a one-
hot encoded vector of all zeros with a ‘1’ at the (i − 1)th

position, and i = 1, . . . ,K.

2. Guidance loss and geometric contraints
SeeABLE is learned by minimizing a learning objective

that consists of a weighted combination of the proposed
Bounded Contrastive Regression (BCR) loss and a Guid-
ance loss that encourages the model to localize the gener-
ated soft-discrepancies, while taking geometric constraints
into account. Specifically, the guidance loss, defined in Eqs.
(12) and (13) of the main paper, uses a three-scale penalty
definition for the learning procedure: (1) the lowest penalty
of 2−2 is assigned if the predicted and true location of the
soft-discrepancy overlap, (2) a higher penalty of 2−1 is as-
signed if the predicted and true location stem from a (hori-
zontally) mirror-symmetric region of the face (e.g., regions
6 and 7 in Fig. 1, or regions 9 and 12, etc.), and (3) the
highest penalty, proportional to the graph-distance dgraph
between the predicted and true soft-discrepancy location is
assigned in all other cases, i.e., 20 × dgraph.

To define the graph-based distance dgraph for the guid-
ance loss, we transform the submask scheme into a graph
representation, as illustrated in Fig. 1 for a 4× 4 grid strat-
egy. Here, each of the Nloc patches is represented by a
red node, with two nodes being connected by an edge if
they share a common border. An adjacency matrix A can
then be constructed from this graph, where A[i, j] = d if
node i is connected to node j, and A[i, j] = 0 otherwise,
with d representing the length of the edge between i and



j. However, in SeeABLE, we are not concerned with the
edge length and fix it to d = 1. The graph-based distance
dgraph is thus defined as the total (minimum) number of
edges that need to be traversed to connect nodes i and j.
We note that this definition is also applicable to other com-
peting submask-generation schemes considered in the main
part of the paper.
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Figure 1. Illustration of the 4 × 4 grid-based submask gener-
ation scheme and corresponding graph. The graph definition
on the right is used to define the graph-based distance used for the
definition of the geometric constraint and respective guidance loss.

3. Examples of soft-discrepancies
To illustrate the impact of the generated soft discrepan-

cies on the visual appearance of the perturbed faces, we
show in Figure 2 a number of examples. Here, the first
row presents the original images, the second row shows the
locally perturbed faces and the last row shows the absolute
difference between the two. Note how the soft discrepancies
are hardly visible, but still allows learning a highly capable
deepfake detector. In Figure 3, we present additional exam-
ples across a wider and more diverse set of images, but in
addition to the real and perturbed faces and their difference,
we also show the blending masks in the third row. Observe
how different local areas of the face are targeted by the soft
discrepancies, leading to subtle perturbations that are often
imperceptible to the human visual system but detectable by
SeeABLE.

4. Additional ablations
In the main part of the paper, we show several ablation

studies to explore the impact of the different components
of SeeABLE on the detection performance. In this sec-
tion, we now add to these results with two additional ab-
lation experiments that investigate: (i) the impact of spatial
and frequency-domain perturbation on the detection task,
and (ii) the effect of different grid configurations in the
submask-generation scheme.

4.1. Spectral vs. spatial perturbations

Let the complete set of local perturbations, utilized to
generate the soft-discrepancies for SeeABLE, be denoted
as P and let this set consist of perturbations being ap-
plied in either the spatial or the frequency domain, i.e.,

Figure 2. Illustration of the visual impact of the generated soft
discrepancies. The first row shows examples of real faces, the
second row shows the perturbed versions and the last row shows
their absolute differences.

P = {Pspatial,Pfreq}. The set of perturbations (trans-
formations) used in either domain was defined in the main
part of the paper in Section 4.1. In Table 8, we investigate
the impact of each group of perturbations on the detection
performance of SeeABLE on FF+ HQ. The AUC score is
again reported as a performance indicator.

P Test set - AUC (in %)

DF F2F FS NT Avg.

{Pspatial} 96.4 94.1 95.8 94.8 95.3
{Pfreq} 99.6 97.3 96.9 93.2 96.7

{Pspatial,Pfreq} 99.2 98.8 99.1 96.9 98.5

Table 8. Ablation results with respect to the augmentation type
used. Shown are AUC scores (in %) on the FF++ HQ dataset.

As can be seen, the results clearly show that the dif-
ferent perturbation types are complementary to each other.
By combining spatial and frequency-domain perturbations,
SeeABLE obtains better results than with either of alone.
We note again at this point that the number and type of
perturbations considered during training (Ntype) defines the
number of prototypes used for the regression task of See-
ABLE. In turn, the results in Table 8 also illustrate the im-
pact of changing the number of prototypes when learning
the detection model.

4.2. Sensitivity to the grid size

In the main part of the paper, we showed that the grid-
based strategy to submask generation yielded the best per-
formance among the evaluated schemes. In Table 9. we
now explore the impact of different configurations of this
grid. Specifically, we investigate the use of 3×3, 4×4, and
5×5 grids in SeeABLE and observe strong performance
across all of these configurations with the highest results

2



Figure 3. Impact of the soft discrepancies on the visual appearance of the perturbed faces across a diverse set of examples. The first
and second row show the real and locally perturbed faces, respectively. The third row shows examples of the blending masks generated by
the grid-based submask-generation scheme, and the last row shows the absolute differences between the initial and perturbed faces.
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Figure 4. Visual examples of randomly selected real (in green)
and diffusion-generated faces (in red) with corresponding
anomaly scores. The first two images represent real faces from
CelebA-HQ [3] and FFHQ [4], respectively, the third image was
generated with latent diffusion [7] and the fourth with Midjour-
ney [6].

observed with the 4× 4 configuration. This particular con-
figuration appears to offer a good trade-off between locality
and visual-perturbation-impact to facilitate learning a well
performing detection model. We note that the A notation
stands for the mask criteria defined in the main part of the
paper, i.e., A1 (full coverage), A2 (no overlap), A3 (bal-
anced size).

A1 A2 A3 Avg. - AUC (in %)

SMGrid 3x3 ✓ ✓ ✓ 74.9
SMGrid 4x4 ✓ ✓ ✓ 75.9
SMGrid 5x5 ✓ ✓ ✓ 75.1

Table 9. Impact of different grid configurations on the perfor-
mance of SeeABLE on the DFDC dataset. Results are shown for
different submask-generation strategies, with the 4 × 4 grid per-
forming the best among the tested configurations.

5. Diffusion models
The recent proliferation of probabilistic diffusion mod-

els has led to the creation of numerous synthetic image
datasets [1, 8]. However, there remains a dearth of facial
datasets specifically designed for deepfake detection. Ad-
ditionally, techniques employed for producing high-quality,

non-existent facial images with a high degree of realism fall
under the umbrella of entire face synthesis rather than deep-
fake generation. Such techniques predominantly utilized
Generative Adversarial Networks (GANs), but are now in-
creasingly adopting denoising diffusion probabilistic mod-
els for the synthesis task.

Similarly to the majority of work on deepfake detection
available in the literature, our paper focuses on the detec-
tion of input-conditioned face manipulations, where local
regions of the original faces are altered, and not synthesis
procedures that generate entire (artificial) face images. Al-
though the intricate details of (entire) face synthesis tech-
niques are beyond the scope of this paper, we showcase
the effectiveness of SeeABLE for the detection of synthet-
ically generated full face images in Figure 4. Here, we ap-
ply our model to two real face images from the CelebA-
HQ [3] and FFHQ [4] datasets and two diffusion- diffusion-
generated images - the first generated with latent diffu-
sion [7] and the second with Midjourney [6]. As can be
seen from the reported anomaly scores in the corners of the
presented images, SeeABLE ensures good separation be-
tween the real and synthetic images and produces compara-
bly higher anomaly scores for the synthesized faces, despite
the fact that it was not trained specifically for the detection
of such types of data.

6. Reproducibility
We note that all of our experiments are fully repro-

ducible. The source code, training scripts, models and
learned (model) weights, associated with SeeABLE, are
made publicly available here:

• SeeABLE:
https://github.com/anonymous-author-sub/

seeable

The remaining code used in the paper is also available
from the official repositories, i.e.,
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• Dlib:
http://dlib.net/

• RetinaFace:
https://github.com/deepinsight/insightface

• FaceSwap:
www.github.com/deepfakes/faceswap

References
[1] Florinel-Alin Croitoru, Vlad Hondru, Radu Tudor Ionescu,

and Mubarak Shah. Diffusion models in vision: A survey.
arXiv preprint arXiv:2209.04747, 2022. 3

[2] Florian Graf, Christoph D. Hofer, Marc Niethammer, and
Roland Kwitt. Dissecting supervised contrastive learning. In
ICML, 2021. 1

[3] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.
Progressive growing of gans for improved quality, stability,
and variation. arXiv preprint arXiv:1710.10196, 2017. 3

[4] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks. In
CVPR, pages 4401–4410, 2019. 3

[5] Kenneth Lange and Tong Tong Wu. An mm algorithm for
multicategory vertex discriminant analysis. Journal of Com-
putational and Graphical Statistics, 17(3):527–544, 2008. 1

[6] Midjourney. https://www.midjourney.com/ Ac-
cessed 2023-08-03. 3

[7] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image syn-
thesis with latent diffusion models. In CVPR, pages 10684–
10695, 2022. 3

[8] Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Run-
sheng Xu, Yue Zhao, Yingxia Shao, Wentao Zhang, Bin
Cui, and Ming-Hsuan Yang. Diffusion models: A compre-
hensive survey of methods and applications. arXiv preprint
arXiv:2209.00796, 2022. 3

4


