
We present the following items in the Appendix:

• The thin-plate splines warp computation (Section A) and its inverse (Section B)

• The detailed formulation for the semantics-aware refinement step (Section C)

• The layer occlusion model (Section D)

• A stochastic extension of our method (Section E)

• Detailed architectural choices for each of WALDO’s modules (Section F)

• More qualitative samples on nonrigid scenes (Section G)

• The influence of the choice of the pretrained segmentation and optical flow models (Section H)

• An ablation study of our inpainting strategy (Section I)

• Further information about our implementation and the overall training process (Section J)

• A statement about the societal impact of this project (Section K)

• A qualitative study of our approach (Section L)

A. Thin-plate splines warp computation

Figure A1. Thin-plate splines transformation mapping points from

C1 onto C2 applied to an arbitrary point p using parameters (T, U).

For clarity, vectors (or points) are denoted by bold face

lower case letters, and matrices are denoted by bold face

upper case letters throughout this presentation. Let p =
(x, y, 1)⊺ be a point in homogeneous coordinates, and

C1 and C2 be two sets of such points in R
3×L, which

we refer to as control points, with L the (fixed) number

of points in each set. The thin-plate splines (TPS) [9]

transformation which maps p onto p12 writes:

p12 = Tp+Uφ(p,C1), (5)

where φ(p,C1) = [k(p,p1)]p1∈C1
is a L-dimensional vector, and (T, U) are TPS parameters in the form of matrices of

dimension 3×3 and 3×L respectively. The transformation is decomposed into a global affine one (through T) and a local

non-affine one (through U and φ). The kernel function k is defined by k : (p,q) → ∥p−q∥22 log ∥p−q∥2 and materializes

the fact that the TPS transformation minimizes the bending energy. The 3(3 + L) TPS parameters are found using the

constraint that points from C1 should be mapped onto points from C2 using (5). This yields a system of 3L equations to

which Bookstein adds 9 extra ones, as explained in [9], which we formulate as:

C1U
⊺ = 03×3. (6)

By applying (5) on pairs of points from C1 and C2, and using extra constraints (6), we obtain the TPS parameters (T, U):

[

T⊺

U⊺

]

= ∆(C1)
−1

[

C2
⊺

03×3

]

, ∆(C1) =

[

C1
⊺ Φ(C1,C1)

03×3 C1

]

, (7)

where Φ(C1,C1) is a L×L matrix obtained by stacking φ(p1,C1) for all points p1 in C1.

Hence, computing the TPS parameters amounts to inverting a (L + 3)× (L + 3) matrix, ∆(C1). Since doing that for

each new transformation is impractical, we use a fixed grid of control points associated with each layer for C1, as a proxy to

compute the flow between pair of frames. By fixing the value of C1, the corresponding matrix inversion is done only once

for the whole training; and we are still able to model different deformations by setting C2 to different values. We note that,

once ∆(C1)
−1 has been computed, sampling the warp w associated with a new C2 is done by finding the corresponding

TPS parameterization using (5), and by sampling the deformations for each point p in a dense grid J1, HK×J1,W K using

(7), where the spatial resolution H×W can be arbitrarily large. Moreover, this process is fully differentiable with respect

to C2 and each point p as it involves simple algebraic operations. In the main paper, C1 and C2 correspond to the regular

grid of control points gi, associated with layer i, and its deformation pit at time step t respectively. The warp wi
t, also in

the main paper, corresponds to the inverse transformation to the one presented here, and associates with every point p12

corresponding to a pixel of the image (right side in Figure A1) the corresponding point p in object coordinates (left side).

However, computing the inverse transformation cannot be achieved by simply switching the roles of C1 and C2, since C1

have to be kept constant, which is why we resort to warp inversion whose simple formulation is detailed in the next section.

14



B. Inverse warp computation

Let w be a warp in R
2×H×W (where H×W is a given spatial resolution), which we could also consider as a mapping from

R
2 to R

2, where w(p) is the geometric transformation of a point p sampled on the grid J1, HK×J1,W K. Such a mapping is not

surjective with respect to the grid, that is, all the cells in the grid are not necessarily reached by w. As a result, we approximate

the inverse warp w−1 by the pixel-accurate inversion in cells for which such a direct mapping exists and use interpolation for

filling others, starting from the cardinal neighbours of already inverted cells, and iteratively filling the remaining ones. The

warp w−1 may need to point out of the grid for some cells, e.g., when an object moves out of the frame. However, this cannot

be extracted from w which is only defined on the grid. To avoid interpolating wrong values in these cells, we only invert w
in those which are close (as per a given threshold) to the ones initially reached by w, and make others point to an arbitrary

position outside of the grid layout. Finally, the same reasons which justify that training errors can backpropagate through a

spatial transformer [42] also apply here.

C. Semantics-aware refinement

We now describe in more details the semantics-refinement step introduced in the main body of the paper. Let mt be a soft

mask in [0, 1]H×W at a given time step t in J1, T K, and c be a soft class assignment in [0, 1]C , both of them predicted for the

same layer, and let st be an input (soft) semantic map in [0, 1]C×H×W also associated with time step t. We denote by c̄, the

mean semantic class on the spatio-temporal tube defined by the masks, which, like c, is a vector in [0, 1]C , and writes:

c̄ =
∑

t,h,w

[mt ⊙F(st, c)](h,w)/
∑

t,h,w

[mt](h,w), (8)

where ⊙ is the element-wise product, and F is a class-filtering function parameterized by c and applied to st, that is, at a

given spatial location (h,w), the result of kipping dominant classes as per c in st:

[F(st, c)](h,w) =
1

1 + kc

∑

j

⟨[st](h,w), c+ kc⟩, (9)

with kc a constant which defines the degree at which low scoring classes will be filtered out. One can set kc = 0 for full

effect and greater values for filtering less. In practice, we fix the value of kc to 0.1. Each mask mt is updated by computing

the L1 distance between the semantic map st and the mean class c̄ at every location (h,w):

[mt](h,w) = (1− ∥[st](h,w) − c̄∥1)[mt](h,w). (10)

D. Layer occlusion model

Our occlusion model is rather standard, but we include it here for completeness. Ordering scores ot are used to filter

non-visible parts in a layer i due to the presence of another layer j on top of it (i.e., when oit ≪ ojt ). The transparency mi
t of

layer i at time step t is updated as follows:

mi
t = mi

t ⊙
∏

j ̸=i

(

1−
ojt

oit + ojt
mj

t

)

, (11)

where ⊙ is the element-wise product whose right-hand side component has values between 0 (occluded) and 1 (visible).

E. Stochastic extension of WALDO

In our original description, motions produced by WALDO are purely deterministic and they converge towards the mean

of all possible future trajectories given the past. Although it is sufficient for short-term prediction, one could be interested in

modeling different behaviours for longer future horizons. For this reason, we propose an extension of WALDO to account

for the intrinsically uncertain nature of the future by allowing multiple predictions.

Our approach, illustrated in Figure E1, builds upon generative adversarial networks (GANs) [30]. We consider the future

layer prediction module as a generator which computes the future positions of control points given ones from the past. This

generator is trained jointly with a discriminator which classifies trajectories as real or fake. Both are playing a minimax

game, where the discriminator is taught to correctly distinguish real from fake trajectories, while the generator tries to fool

15



Future layer
prediction

Masking

Trajectory
discrimination

Past control points

Real control points

Fake control points

Noise

Real / fake ?

Layer features

Figure E1. Stochastic future prediction. We extend the future layer prediction module of WALDO to allow the prediction of multiple

futures. The module itself is not changed, except that it now uses noise (as input and in attention modules). The major difference is that

a trajectory discrimination module is used at train time to assist the model in producing a realistic control point trajectory instead of the

mean trajectory. At inference, only the future layer prediction module is kept. See text for details.

the discriminator. Through this process we expect synthetic trajectories to gradually improve in realism and to capture

multiple modes from the underlying data distribution.

We implement the discriminator with a transformer and use the WGAN loss introduced in [3] for training. In addition

to this loss, we find that keeping the initial reconstruction term (Lp) is important for the stability of training. Moreover, we

normalize gradients from both supervision signals (reconstruction and adversarial) so that they have matching contributions.

F. Detailed architectures

We detail inner operations of each of WALDO’s modules (for the dimensions used on Cityscapes [17]).

F.1. Layered video decomposition

Table F1. Input encoding.

Stage Operation On Output size

s - - 20×128×256
f - - 2×128×256
1 Concat. s, f 22×128×256

Conv1 [3×3] 1 64×64×128
LN1 Norm. 1 64×64×128
Act1 GELU 1 64×64×128
Conv2 [3×3] 1 128×32×64
LN2 Norm. 1 128×32×64
Act2 GELU 1 128×32×64
Conv3 [3×3] 1 256×16×32
LN3 Norm. 1 256×16×32
Act3 GELU 1 256×16×32
Conv4 [3×3] 1 512×8×16

y - 1 512×8×16

Input encoding. Semantic and flow maps (s and f ) are concatenated and

go through a series of 3× 3 convolutional layers (Conv) with padding of

1 and stride of 2, each followed by layer norm (LN) and a GELU activa-

tion [35] (Act) to form downscaled features y for a given time step.

Layer feature extraction. We combine features encoded from different

time steps into (Y ), and sum them with different embeddings correspond-

ing to their temporal ordering and spatial positioning (T and P) to form in-

put (1). Layer features Zobj and Zbg are computed from input (2), which is

the concatenation of object and background embeddings (2a and 2b), them-

selves expressed as the sum of layer ordering and spatial positioning em-

beddings (S, L, O and B). The next operations consists in layer norm (LN),

self-attention (Att) to update (2) by computing queries, keys and values for

(1) but only keys and values for (2), and multi-layer perceptrons (MLP) with

GELU activations [35].

Control point positioning. We apply similar operations to predict control

points (pobj , pbg) for object and background layers at a given time step from

associated features y. A key difference with the previous module is that this one is time-independent, and that inputs (1) and

(2) play the same role in the transformer blocks. A fully-connected layer (FC) outputs the 3D position of each control point

in each of the 16 + 1 layers.

Object masking. This module predicts an alpha-transparency mask a for an object from its associated features z. It is the re-

verse process compared to the input encoding module, that is, we replace convolutions with transposed ones for progressively

upscaling feature maps z, and we decrease the size of features at each step instead of increasing it.

16



Object classification. This module predicts for each object represented by z a soft class assignment c, by first averaging z
over its spatial dimensions, and then applying layer norm (LN), a fully-connected layer (FC), and a softmax activation (Act)

to output c as a categorical distribution over classes.

F.2. Future layer prediction

Past encoding. Past control points corresponding to objects (resp. the background) are transformed into vectors, each of

them paired with one layer and one time step, using a fully-connected layer FC1 (resp. FC2). We apply a pooling operation

to layer representations (Zobg and Zbg) to reduce them to a single vector representing each layer. All these vectors are

concatenated, summed with the suitable embeddings (T and P), and passed through two vanilla transformer blocks to produce

encoded features E.

Future decoding. Future control points are obtained by initializing future representations (2) with some embeddings (T and

P), and then alternating between transformer blocks with self-attention on future representations (2), and cross-attention from

past to future ones (1 and 2).

F.3. Warping, inpainting and fusion

The final component of our approach is a U-Net [68] composed of 6 downscaling layers and 6 upscaling ones, with as

many skip connections between the two branches. Each downscaling (resp. upscaling) layer divides (resp. multiplies) by 2
its input resolution using a 3×3 convolution (resp. transposed convolution) with a stride of 2, and multiplies (resp. divides)

by 2 the size of features so that intermediate features (between the two branches) are of size 512. This module outputs RGB

values to update certain regions of an image (filling missing background or object parts, adapting light effects or shadows

in other parts), a mask indicating these regions, a score (of confidence) at each pixel location to allow fusing multiple views

corresponding to the same image.

Table F2. Layer feature extraction.

Stage Operation On Output size

Y - - 4×512×8×16
(T) Embed. - 4×512×1×1
(P) Embed. - 1×512×8×16
1 Sum/Reshape Y , T, P 512×512

(S) Embed. - 1×512×4×4
(L) Embed. - 1×512×8×16
(O) Embed. - 16×512×1×1
(B) Embed. - 1×512×1×1
2a Sum/Reshape S, O 256×512
2b Sum/Reshape L, B 128×512
2 Concat. 2a, 2b 384×512

LN1 Norm. 1 512×512
LN2 Norm. 2 384×512
Att1 [512]×3 2/1 384×512
LN3 Norm. 2 384×512
MLP1 [2048, 512] 2 384×512
LN4 Norm. 2 384×512
Att2 [512]×3 2/1 384×512
LN5 Norm. 2 384×512
MLP2 [2048, 512] 2 384×512

Zobj Split/Reshape 2 16×512×4×4
Zbg Split/Reshape 2 1×512×8×16

Table F3. Control point positioning.

Stage Operation On Output size

y - - 512×8×16
(P) Embed. - 512×8×16
1 Sum/Reshape y, P 128×512

Zobj - - 16×512×4×4
Zbg - - 1×512×8×16
(S) Embed. - 1×512×4×4
(L) Embed. - 1×512×8×16
(O) Embed. - 16×512×1×1
(B) Embed. - 1×512×1×1
2a Sum/Reshape Zobj , S, O 16×512×4×4
2b Sum/Reshape Zbg , L, B 1×512×8×16
2 Concat. 2a, 2b 384×512

3 Concat. 1, 2 512×512

LN1 Norm. 3 512×512
Att1 [512]×3 3 512×512
LN2 Norm. 3 512×512
MLP1 [2048, 512] 3 512×512
LN3 Norm. 3 512×512
Att2 [512]×3 3 512×512
LN4 Norm. 3 512×512
MLP2 [2048, 512] 3 512×512

2 Split 3 384×512
FC [3] 2 384×3

pobj Split/Reshape 2 16×3×4×4
pbg Split/Reshape 2 1×3×8×16

17



Table F4. Object masking.

Stage Operation On Output size

z - - 512×4×4
1 - z 512×4×4

LN1 Norm. 1 512×4×4
TConv1 [3×3] 1 256×8×8
LN2 Norm. 1 256×8×8
Act1 GELU 1 256×8×8
TConv2 [3×3] 1 128×16×16
LN3 Norm. 1 128×16×16
Act2 GELU 1 128×16×16
TConv3 [3×3] 1 64×32×32
LN4 Norm. 1 64×32×32
Act3 GELU 1 64×32×32
TConv4 [3×3] 1 1×64×64
Act4 Sigmoid 1 1×64×64

a - 1 1×64×64

Table F5. Object classification.

Stage Operation On Output size

z - - 512×4×4
1 Spatial mean z 512

LN Norm. 1 512
FC [20] 1 20
Act Softmax 1 20

c - 1 20

Table F6. Past encoding.

Stage Operation On Output size

Pobj - - 4×16×3×4×4
Pbg - - 4×1×3×8×16
1a Reshape Pobj 4×16×48
1b Reshape Pbg 4×1×128

FC1 [512] 1a 4×16×512
FC2 [512] 1b 4×1×512

Zobj - - 16×512×4×4
Zbg - - 1×512×8×16
2a Pool/Reshape Zobj 1×16×512
2b Pool/Reshape Zbg 1×1×512

3 Concat. 1a, 1b, 2a,

2b

5×17×512

(T) Embed. - 5×1×512
(P) Embed. - 1×17×512
3 Sum/Reshape 3, T, P 85×512

LN1 Norm. 3 85×512
Att1 [512]×3 3 85×512
LN2 Norm. 3 85×512
MLP1 [2048, 512] 3 85×512
LN3 Norm. 3 85×512
Att2 [512]×3 3 85×512
LN4 Norm. 3 85×512
MLP2 [2048, 512] 3 85×512

E Reshape 3 5×17×512

Table F7. Future decoding.

Stage Operation On Output size

E - - 5×17×512
1 Reshape E 85×512

(T) Embed. - 10×1×512
(P) Embed. - 1×17×512
2 Sum/Reshape T, P 170×512

LN1 Norm. 1 170×512
LN2 Norm. 2 170×512
Att1 [512]×3 2 170×512
LN3 Norm. 2 170×512
MLP1 [2048, 512] 2 170×512
LN4 Norm. 2 170×512
Att2 [512]×3 2/1 170×512
LN5 Norm. 2 170×512
MLP2 [2048, 512] 2 170×512
LN6 Norm. 2 170×512
Att3 [512]×3 2 170×512
LN7 Norm. 2 170×512
MLP3 [2048, 512] 2 170×512
LN8 Norm. 2 170×512
Att4 [512]×3 2/1 170×512
LN9 Norm. 2 170×512
MLP4 [2048, 512] 2 170×512
LN10 Norm. 2 170×512

2a Split 2 160×512
2b Split 2 10×512

FC1 [48] 2a 160×48
FC2 [384] 2b 10×384

Pobj Reshape 2a 10×16×3×4×4
Pbg Reshape 2b 10×1×3×8×16

18



G. Additional visual results on nonrigid scenes

T+1 T+10 Warp T+1 T+10 Warp
Figure G2. Future prediction from T=4 frames on Taichi-HD (256 × 256). Nonrigid motions can be visualized by the associated warps,

predicted from the control points between T and T+10 (colors represent different directions).

We further illustrate (Figure G2) that the motion representation proposed in WALDO allows us to represent nonrigid

object deformations by training on Taichi-HD [73] dataset. Our approach can handle complex human motions such as

leaning forward / backward, moving one leg while keeping the other on the ground, raising individual arms...

H. Influence of the choice of the pretrained segmentation and optical flow models

The use of pretrained networks in prior works vary widely according to the level of information required by each method,

and depending on what was available at the time to extract these information. We summarize the differences in Table H1.

Table H1. Pretrained models used by different methods.

Method
Optical flow

estimation

Semantic

segmentation

Instance

segmentation
Depth estimation Object tracking

Video Frame

Interpolation

VPVFI [100] RAFT [77] - - - - RIFE [39]

VPCL [29] RAFT [77] - - - - -

Vid2vid [90] FlowNet2 [40] DeepLabV3 [14] - - - -

OMP [99] PWCNet [76] VPLR [113] UPSNet [102] GeoNet [107] SiamRPN++ [50] -

SADM [7] PWCNet [76] DeepLabV3 [14] - - - -

WALDO RAFT [77] DeepLabV3 [14] - - - -

We thus evaluate the influence of the choice of the pretrained segmentation and optical flow models to WALDO’s per-

formance. Results on Cityscapes and KITTI test set, obtained by substituting segmentation model DeepLabV3 [14] with

MobileNetV2 [70] or ViT-Adapter [15], and optical flow model RAFT [77] with PWCNet [76], are presented in Table H2.

Table H2. Ablation studies of optical flow estimation and semantic segmentation methods on the Cityscapes and KITTI test sets. Like in

the main paper, we compute multi-scale SSIM (×103) and LPIPS (×103) for the kth frame and report the average for k in J1,KK.

Flow Segmentation

[76] [77] [70] [14] [15]

✓ ✓

✓ ✓

✓ ✓

✓ ✓

(a) Cityscapes

K = 1 K = 5 K = 10

SSIM ↑ LPIPS ↓ SSIM ↑ LPIPS ↓ SSIM ↑ LPIPS ↓

947 062 836 122 753 175

954 055 849 111 768 165

957 049 854 105 771 158

957 050 853 105 770 159

(b) KITTI

K = 1 K = 3 K = 5

SSIM ↑ LPIPS ↓ SSIM ↑ LPIPS ↓ SSIM ↑ LPIPS ↓

856 116 760 171 697 214

859 112 756 166 692 209

867 108 766 163 702 206
866 109 767 163 703 205

Despite PWCNet [76] having approximately twice the average end-point-error of RAFT [77], using it instead of RAFT

only results in a small performance drop for video prediction with WALDO. This is in line with the conclusions of Geng et al.

in [29] who conducted a similar comparison. Moreover, replacing DeepLabV3 [14] with MobileNetV2 [70], with respective

segmentation performance of 81 and 75 in terms of test set mIoU on Cityscapes, yields only little loss of video prediction

quality. Conversely, using a more advanced segmentation model like ViT-Adapter [15], with 85 test set mIoU on Cityscapes,

does not change the results substantially. Our interpretation is that the segmentation quality is not the limiting factor for

WALDO’s performance once it has reached a sufficient level. To conclude, WALDO is quite robust to the choice of the

pretrained segmentation and optical flow models.

19



I. Ablation study of the inpainting strategy

Table I1. Ablation of our inpainting strategy on the Cityscapes test set.

Adversarial inpainting [51] Temporal consistency
K = 1 K = 5 K = 10

SSIM ↑LPIPS ↓SSIM ↑LPIPS ↓SSIM ↑LPIPS ↓FVD ↓

957 049 853 105 770 158 061

✓ 957 049 854 105 771 158 057
✓ ✓ 957 049 854 105 771 158 055

∅
A

d
v.

in
p

.
[5

1
]

A
d

v.
in

p
.

[5
1
]

+
T

em
p

.
co

n
s.

D
is

o
cc

lu
d

ed

re
g

io
n

s

T + 4 T + 7 T + 10 T + 4 T + 7 T + 10

Figure I3. Visual ablation of our inpainting strategy. We start off with a method that fills in empty regions with the sole objective to minimize

the reconstruction error (∅), we then propose to leverage an off-the-shelf adversarial inpainting (adv. inp.) method [51] to improve realism,

and we finally illustrate our full strategy where we use the predicted flow to ensure the temporal consistency (temp. const.) of inpainted

regions. For clarity, these regions are indicated in the last row. Please zoom in for details.

Given that we use an off-the-shelf inpainting method [51] trained on external data [111], we assess the impact of the use

of such a model in our approach on quantitative measurements.

Results are presented in Table I1 and show that although gains in SSIM and FVD are possible, these gains remain small.

In addition, no perceptible change is observed on LPIPS. Our temporal consistency strategy, which consists in filling frames

one by one and using the predicted flow to propagate new contents into subsequent frames, allow small extra gains on the

FVD metric.

The benefits from our inpainting strategy are more visible in qualitative samples presented in Figure I3. Without adver-

sarial inpainting (∅), empty image regions are filled using a model trained to minimize the reconstruction error. We observe

that this results in blurry image parts with important artefacts. Using adversarial inpainting produces much more realistic

images when considering frames individually, but filling each of them independently is still not very natural (best viewed in

the videos included in the project webpage). Our approach for producing temporally-consistent outputs is able to solve this

20



issue. For example, in the left-most sample sequence of the third row of Figure I3, we see that inpainted image parts match

between different time steps although the camera is moving.

J. Further implementation details

We follow [99] and group semantic classes which form a consistent entity together, e.g., riders with their bicycle, traffic

lights/signs with the poles, which allows us to represent those within a single object layer. We use horizontal flips, cropping,

and color jittering as data augmentation. Although we encounter signs of over-fitting in some experiments, validation curves

do not increase during training, nor after convergence. So best model selection is not necessary, and we always save the last

checkpoint. We find that a good initialization of object regions helps the layer decomposition module to reach a better opti-

mum and to converge faster. Hence, we add a warmup period during which the module is trained without flow reconstruction

(λf = 0), and then progressively increase the associated parameter during training (λf > 0) once we start having good object

proposals. Without doing so, the module tends to rely on the background layer alone to reconstruct the scene motion, which,

as a result, leads to an under-use of the object layers. We also find that removing data-augmentation in the last few epochs

when training the warping, inpainting and fusing module slightly improves the performance at inference time.

K. Societal impact

The total cost for this project, including architecture and hyperparameter search, training, testing and comparisons with

baselines has been around 25K GPU hours, with an associated environmental cost of course. On the other hand, we strive

to minimize this cost by decomposing video prediction into efficient lightweight modules, and our approach will hopefully

contribute to eventually improve the safety of autonomous vehicles, by, say, predicting the motion of nearby agents.

L. Qualitative study of WALDO

In this section, we provide qualitative samples for each of the three modules which compose WALDO.

Layered video decomposition. We illustrate in Figure L1 our strategy to decompose videos into layers as a way to build

inter-frame connections using a compact representation of motion from which we recover the dense scene flow.

We observe that objects are predicted in regions which match our pseudo ground truth, constructed from input segmenta-

tion and flow maps, even in difficult regions like the poles. Although they share the same semantic class, the three cars in the

left-most example in Figure L1 are correctly segmented into different objects. Still, it may happen that multiple objects are

merged into the same layer, or that an object is over-segmented into multiple layers (like the ego vehicle in these examples).

This is due, in part, to the limitations of our approach which indicates regions of interest for the objects, but does not impose

how they should be split among the different layers. When computing video decompositions, we also position a set of control

points associated with each layer. The delta of control points between pairs of time steps produces sparse motion vectors for

the background and the objects. We show that, although we use a small number of points, we are able to accurately recover

the dense scene flow using TPS transformations, and that motion discontinuities occur at layer boundaries as expected.

Future layer prediction. We compare in Figure L2 the scene dynamics extracted from our decomposition strategy to the

one inferred via the future layer prediction module.

We accurately reconstruct complex motions under various scenarios: when the background is static, moves towards the

camera due to the ego motion, or sideways when the car is turning; in the presence of different kinds of objects such as trucks,

cars, bikes or various road elements; and whether these objects move in the same direction or not.

Warping, fusion and inpainting. We illustrate in Figure L3 how future frames are finally synthesized.

Warping past frames to obtain future ones is not enough, as some regions may not be recovered from the past. In particular,

we see that shadows may not always be consistent with the new position of objects, e.g., for the vehicle in the bottom-right

example in Figure L3. Our fusion and inpainting strategy is able to fill empty regions with realistic and temporal-consistent

content (see also Sec I), and handles shadows reasonably well. Finally, we show that by fusing multiple views from the past

context, WALDO is able to reduce disocclusions significantly (from the grey + black to only black regions in the last row

of the figure).

21



t = 1 t = 7 t = 14 t = 1 t = 7 t = 14

R
ea

l
fr

am
e

R
ea

l
se

g
.

m
ap

R
ea

l
fl

o
w

m
ap

P
se

u
d

o
o

b
je

ct
s

R
ec

.
o

b
je

ct
s

L
ay

er
m

as
k

s
R

ec
.

m
o

ti
o

n
R

ec
.

fl
o
w

Figure L1. Visualization of the layered video decomposition. Semantic segmentation maps and optical flow maps are extracted from

RGB frames using off-the-shelf methods [14, 77]. We combine both to construct pseudo ground truths for object discovery: in white ,

moving foreground regions towards which objects are attracted; in grey , static foreground ones which remain neutral; and in black , the

background which repulses objects. We then show predicted object regions and their decomposition into layers. Each layer is tracked over

time using a small set of control points. We compute motion vectors between points in pairs of frames (here, between consecutive time

steps), and reconstruct from these and the layer masks the complex scene flow. Please zoom in for details.

22



T + 1 T + 5 T + 10 T + 1 T + 5 T + 10

R
ea

l
fr

am
e

R
ec

.
m

o
ti

o
n

P
re

d
.

m
o

ti
o

n
R

ea
l

fr
am

e
R

ec
.

m
o

ti
o

n
P

re
d

.
m

o
ti

o
n

R
ea

l
fr

am
e

R
ec

.
m

o
ti

o
n

P
re

d
.

m
o

ti
o

n

Figure L2. Visualization of future layer prediction. We use control points from the layered video decomposition as supervision. We

compare motion vectors reconstructed from these points to the ones predicted for up to time step T + 10 from a context of T=4 past

frames. The motion vectors are computed between time step T and time step t in {T +1, T +10}. Different colors correspond to different

layers. Please zoom in for details.

23



T + 1 T + 5 T + 10 T + 1 T + 5 T + 10

R
ea

l
fr

am
e

W
ar

p
ed

fr
am

e
In

p
.

fr
am

e
D

is
o

cc
.

R
ea

l
fr

am
e

W
ar

p
ed

fr
am

e
In

p
.

fr
am

e
D

is
o

cc
.

Figure L3. Visualization of the warping, fusion and inpainting module. We use the layer decomposition computed on a whole video to

reconstruct the last 10 frames using the T = 4 first ones as context. This is done by warping, inpainting and fusing different views from

the context. We compare real frames, warped ones, and fused/inpainted ones. We also illustrate the effect of disocclusion, by showing in

the last row, in black , regions which are not visible in any frame of the context, and, in grey , those which are not visible in some frames

but visible in others. Please zoom in for details.

24



References

[1] Adil Kaan Akan, Erkut Erdem, Aykut Erdem, and Fatma

Güney. SLAMP: Stochastic latent appearance and motion

prediction. In ICCV, 2021. 1, 2, 5, 6, 7

[2] Adil Kaan Akan, Sadra Safadoust, Erkut Erdem, Aykut Er-

dem, and Fatma Güney. Stochastic video prediction with

structure and motion. arXiv preprint, 2022. 1, 2, 6

[3] Martin Arjovsky, Soumith Chintala, and Léon Bottou.

Wasserstein generative adversarial networks. In ICML,

2017. 16

[4] Mohammad Babaeizadeh, Chelsea Finn, Dumitru Erhan,

Roy H. Campbell, and Sergey Levine. Stochastic varia-

tional video prediction. In ICLR, 2018. 2, 7

[5] Zhipeng Bao, Pavel Tokmakov, Allan Jabri, Yu-Xiong

Wang, Adrien Gaidon, and Martial Hebert. Discovering

objects that can move. In CVPR, 2022. 2, 3

[6] Amir Bar, Roei Herzig, Xiaolong Wang, Anna Rohrbach,

Gal Chechik, Trevor Darrell, and Amir Globerson. Compo-

sitional video synthesis with action graphs. In ICML, 2021.

2

[7] Xinzhu Bei, Yanchao Yang, and Stefano Soatto. Learning

semantic-aware dynamics for video prediction. In CVPR,

2021. 1, 2, 5, 6, 19

[8] Serge Belongie, Jitendra Malik, and Jan Puzicha. Shape

matching and object recognition using shape contexts.

TPAMI, 2002. 3

[9] Fred L. Bookstein. Principal warps: Thin-plate splines and

the decomposition of deformations. TPAMI, 1989. 1, 3, 7,

14

[10] Christopher P Burgess, Loic Matthey, Nicholas Watters,

Rishabh Kabra, Irina Higgins, Matt Botvinick, and Alexan-

der Lerchner. Monet: Unsupervised scene decomposition

and representation. arXiv preprint, 2019. 2

[11] Lluis Castrejon, Nicolas Ballas, and Aaron Courville. Im-

proved conditional VRNNs for video prediction. In ICCV,

2019. 6

[12] Michael B Chang, Tomer Ullman, Antonio Torralba, and

Joshua B Tenenbaum. A compositional object-based ap-

proach to learning physical dynamics. In ICLR, 2016. 2

[13] Zheng Chang, Xinfeng Zhang, Shanshe Wang, Siwei Ma,

and Wen Gao. STRPM: A spatiotemporal residual predic-

tive model for high-resolution video prediction. In CVPR,

2022. 1, 2, 5, 7

[14] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Flo-

rian Schroff, and Hartwig Adam. Encoder-decoder with

atrous separable convolution for semantic image segmenta-

tion. In ECCV, 2018. 2, 3, 5, 9, 19, 22

[15] Zhe Chen, Yuchen Duan, Wenhai Wang, Junjun He, Tong

Lu, Jifeng Dai, and Yu Qiao. Vision transformer adapter for

dense predictions. arXiv preprint, 2022. 9, 19

[16] Aidan Clark, Jeff Donahue, and Karen Simonyan. Adver-

sarial video generation on complex datasets. arXiv preprint,

2019. 2

[17] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo

Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe

Franke, Stefan Roth, and Bernt Schiele. The Cityscapes

dataset for semantic urban scene understanding. In CVPR,

2016. 2, 5, 16

[18] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. ImageNet: A large-scale hierarchical im-

age database. In CVPR, 2009. 5

[19] Emily Denton and Rob Fergus. Stochastic video generation

with a learned prior. In ICML, 2018. 2, 6

[20] Prafulla Dhariwal and Alexander Nichol. Diffusion models

beat GANs on image synthesis. In NeurIPS, 2021. 1

[21] Sébastien Ehrhardt, Oliver Groth, Aron Monszpart, Mar-

tin Engelcke, Ingmar Posner, Niloy J. Mitra, and Andrea

Vedaldi. RELATE: Physically plausible multi-object scene

synthesis using structured latent spaces. In NeurIPS, 2020.

2

[22] Martin Engelcke, Adam R Kosiorek, Oiwi Parker Jones,

and Ingmar Posner. Genesis: Generative scene inference

and sampling with object-centric latent representations. In

ICLR, 2020. 2

[23] Patrick Esser, Robin Rombach, and Björn Ommer. Taming

transformers for high-resolution image synthesis. In CVPR,

2021. 1

[24] Chelsea Finn, Ian Goodfellow, and Sergey Levine. Un-

supervised learning for physical interaction through video

prediction. In NeurIPS, 2016. 2

[25] Jean-Yves Franceschi, Edouard Delasalles, Mickaël Chen,

Sylvain Lamprier, and Patrick Gallinari. Stochastic latent

residual video prediction. In ICML, 2020. 2, 6

[26] Aditya Ganeshan, Alexis Vallet, Yasunori Kudo, Shin-ichi

Maeda, Tommi Kerola, Rares Ambrus, Dennis Park, and

Adrien Gaidon. Warp-refine propagation: Semi-supervised

auto-labeling via cycle-consistency. In ICCV, 2021. 2

[27] Hang Gao, Huazhe Xu, Qi-Zhi Cai, Ruth Wang, Fisher Yu,

and Trevor Darrell. Disentangling propagation and genera-

tion for video prediction. In ICCV, 2019. 2

[28] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel

Urtasun. Vision meets robotics: The KITTI dataset. IJRR,

2013. 2, 5

[29] Daniel Geng, Max Hamilton, and Andrew Owens.

Comparing correspondences: Video prediction with

correspondence-wise losses. In CVPR, 2022. 1, 2, 6, 7,

19

[30] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville,

and Yoshua Bengio. Generative adversarial nets. In

NeurIPS, 2014. 5, 15

[31] Klaus Greff, Raphaël Lopez Kaufman, Rishabh Kabra,

Nick Watters, Christopher Burgess, Daniel Zoran, Loic

Matthey, Matthew Botvinick, and Alexander Lerchner.

Multi-object representation learning with iterative varia-

tional inference. In ICML, 2019. 2

[32] Ligong Han, Jian Ren, Hsin-Ying Lee, Francesco Barbieri,

Kyle Olszewski, Shervin Minaee, Dimitris Metaxas, and

Sergey Tulyakov. Show me what and tell me how: Video

synthesis via multimodal conditioning. In CVPR, 2022. 2

[33] Zekun Hao, Xun Huang, and Serge Belongie. Controllable

video generation with sparse trajectories. In CVPR, 2018.

2

25



[34] Paul Henderson and Christoph H. Lampert. Unsupervised

object-centric video generation and decomposition in 3D.

In NeurIPS, 2020. 2

[35] Dan Hendrycks and Kevin Gimpel. Gaussian error linear

units (GELUs). arXiv preprint, 2016. 16

[36] Jonathan Ho, Tim Salimans, Alexey Gritsenko, William

Chan, Mohammad Norouzi, and David J Fleet. Video dif-

fusion models. arXiv preprint, 2022. 1

[37] Jun-Ting Hsieh, Bingbin Liu, De-An Huang, Li F Fei-Fei,

and Juan Carlos Niebles. Learning to decompose and dis-

entangle representations for video prediction. In NeurIPS,

2018. 2

[38] Yaosi Hu, Chong Luo, and Zhenzhong Chen. Make it move:

controllable image-to-video generation with text descrip-

tions. In CVPR, 2022. 2

[39] Zhewei Huang, Tianyuan Zhang, Wen Heng, Boxin Shi,

and Shuchang Zhou. Real-time intermediate flow estima-

tion for video frame interpolation. In ECCV, 2022. 19

[40] Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keu-

per, Alexey Dosovitskiy, and Thomas Brox. Flownet 2.0:

Evolution of optical flow estimation with deep networks.

In CVPR, 2017. 19

[41] Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian

Sminchisescu. Human3.6M: Large scale datasets and pre-

dictive methods for 3d human sensing in natural environ-

ments. TPAMI, 2013. 2, 5

[42] Max Jaderberg, Karen Simonyan, Andrew Zisserman, and

Koray Kavukcuoglu. Spatial transformer networks. In

NeurIPS, 2015. 2, 15

[43] Nebojsa Jojic and Brendan J Frey. Learning flexible sprites

in video layers. In CVPR, 2001. 2, 4

[44] Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen,

Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Alias-free

generative adversarial networks. In NeurIPS, 2021. 1

[45] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. In ICLR, 2015. 5

[46] Thomas Kipf, Gamaleldin F. Elsayed, Aravindh Mahen-

dran, Austin Stone, Sara Sabour, Georg Heigold, Rico Jon-

schkowski, Alexey Dosovitskiy, and Klaus Greff. Condi-

tional Object-Centric Learning from Video. In ICLR, 2022.

2

[47] Manoj Kumar, Mohammad Babaeizadeh, Dumitru Erhan,

Chelsea Finn, Sergey Levine, Laurent Dinh, and Durk

Kingma. VideoFlow: A conditional flow-based model for

stochastic video generation. In ICLR, 2020. 2

[48] Yong-Hoon Kwon and Min-Gyu Park. Predicting future

frames using retrospective Cycle GAN. In CVPR, 2019. 7

[49] Alex X Lee, Richard Zhang, Frederik Ebert, Pieter Abbeel,

Chelsea Finn, and Sergey Levine. Stochastic adversarial

video prediction. arXiv preprint, 2018. 7

[50] Bo Li, Wei Wu, Qiang Wang, Fangyi Zhang, Junliang Xing,

and Junjie Yan. SiamRPN++: Evolution of siamese visual

tracking with very deep networks. In CVPR, 2019. 19

[51] Wenbo Li, Zhe Lin, Kun Zhou, Lu Qi, Yi Wang, and Jiaya

Jia. MAT: Mask-aware transformer for large hole image

inpainting. In CVPR, 2022. 5, 9, 20

[52] Yijun Li, Chen Fang, Jimei Yang, Zhaowen Wang, Xin Lu,

and Ming-Hsuan Yang. Flow-grounded spatial-temporal

video prediction from still images. In ECCV, 2018. 2

[53] Ziwei Liu, Raymond A Yeh, Xiaoou Tang, Yiming Liu, and

Aseem Agarwala. Video frame synthesis using deep voxel

flow. In ICCV, 2017. 6

[54] Francesco Locatello, Dirk Weissenborn, Thomas Un-

terthiner, Aravindh Mahendran, Georg Heigold, Jakob

Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-

centric learning with slot attention. In NeurIPS, 2020. 2,

4

[55] William Lotter, Gabriel Kreiman, and David Cox. Deep

predictive coding networks for video prediction and unsu-

pervised learning. In ICLR, 2017. 6

[56] Erika Lu, Forrester Cole, Tali Dekel, Andrew Zisserman,

William T Freeman, and Michael Rubinstein. Omnimatte:

associating objects and their effects in video. In CVPR,

2021. 2

[57] Pauline Luc, Aidan Clark, Sander Dieleman, Diego de

Las Casas, Yotam Doron, Albin Cassirer, and Karen Si-

monyan. Transformation-based adversarial video predic-

tion on large-scale data. arXiv preprint, 2020. 2

[58] Michael Mathieu, Camille Couprie, and Yann LeCun. Deep

multi-scale video prediction beyond mean square error. In

ICLR, 2016. 7

[59] Jacob Menick and Nal Kalchbrenner. Generating high fi-

delity images with subscale pixel networks and multidi-

mensional upscaling. In ICLR, 2019. 1

[60] Matthias Minderer, Chen Sun, Ruben Villegas, Forrester

Cole, Kevin P Murphy, and Honglak Lee. Unsupervised

learning of object structure and dynamics from videos. In

NeurIPS, 2019. 2

[61] Guillaume Le Moing, Jean Ponce, and Cordelia Schmid.

CCVS: Context-aware controllable video synthesis. In

NeurIPS, 2021. 1, 2

[62] Tom Monnier, Elliot Vincent, Jean Ponce, and Mathieu

Aubry. Unsupervised layered image decomposition into ob-

ject prototypes. In ICCV, 2021. 2, 4

[63] Charlie Nash, João Carreira, Jacob Walker, Iain Barr, An-

drew Jaegle, Mateusz Malinowski, and Peter Battaglia.

Transframer: Arbitrary frame prediction with generative

models. arXiv preprint, 2022. 1

[64] Charlie Nash, Jacob Menick, Sander Dieleman, and Pe-

ter W Battaglia. Generating images with sparse representa-

tions. In ICML, 2021. 1

[65] Eunbyung Park, Jimei Yang, Ersin Yumer, Duygu Ceylan,

and Alexander C Berg. Transformation-grounded image

generation network for novel 3D view synthesis. In CVPR,

2017. 2

[66] M Pawan Kumar, Philip HS Torr, and Andrew Zisserman.

Learning layered motion segmentations of video. In ICCV,

2008. 2

[67] Mikel D Rodriguez, Javed Ahmed, and Mubarak Shah. Ac-

tion MACH a spatio-temporal maximum average correla-

tion height filter for action recognition. In CVPR, 2008. 2,

5

26



[68] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-

Net: Convolutional networks for biomedical image seg-

mentation. In MICCAI, 2015. 5, 17

[69] Masaki Saito, Shunta Saito, Masanori Koyama, and Sosuke

Kobayashi. Train sparsely, generate densely: Memory-

efficient unsupervised training of high-resolution temporal

GAN. IJCV, 2020. 2

[70] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey

Zhmoginov, and Liang-Chieh Chen. MobileNetV2: In-

verted residuals and linear bottlenecks. In CVPR, 2018. 9,

19

[71] Karl Schmeckpeper, Georgios Georgakis, and Kostas Dani-

ilidis. Object-centric video prediction without annotation.

In ICRA, 2021. 2

[72] Baoguang Shi, Xinggang Wang, Pengyuan Lyu, Cong Yao,

and Xiang Bai. Robust scene text recognition with auto-

matic rectification. In CVPR, 2016. 2

[73] Aliaksandr Siarohin, Stéphane Lathuilière, Sergey

Tulyakov, Elisa Ricci, and Nicu Sebe. First order motion

model for image animation. In NeurIPS, 2019. 19

[74] Karen Simonyan and Andrew Zisserman. Very deep con-

volutional networks for large-scale image recognition. In

ICLR, 2015. 5

[75] Deqing Sun, Jonas Wulff, Erik B Sudderth, Hanspeter Pfis-

ter, and Michael J Black. A fully-connected layered model

of foreground and background flow. In CVPR, 2013. 2

[76] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz.

PWC-Net: CNNs for optical flow using pyramid, warping,

and cost volume. In CVPR, 2018. 9, 19

[77] Zachary Teed and Jia Deng. RAFT: Recurrent all-pairs field

transforms for optical flow. In ECCV, 2020. 2, 3, 5, 9, 19,

22

[78] D’Arcy Wentworth Thompson. On growth and form. Na-

ture, 1917. 3

[79] Yu Tian, Jian Ren, Menglei Chai, Kyle Olszewski, Xi Peng,

Dimitris N. Metaxas, and Sergey Tulyakov. A good image

generator is what you need for high-resolution video syn-

thesis. In ICLR, 2021. 1, 2

[80] Sergey Tulyakov, Ming-Yu Liu, Xiaodong Yang, and Jan

Kautz. MoCoGAN: Decomposing motion and content for

video generation. In CVPR, 2018. 2

[81] Thomas Unterthiner, Sjoerd van Steenkiste, Karol Kurach,

Raphaël Marinier, Marcin Michalski, and Sylvain Gelly.

FVD: A new metric for video generation. In ICLRw, 2019.

5

[82] Aaron van den Oord, Oriol Vinyals, and Koray

Kavukcuoglu. Neural discrete representation learning. In

NeurIPS, 2017. 1

[83] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob

Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser,

and Illia Polosukhin. Attention is all you need. In NeurIPS,

2017. 4, 8

[84] Ruben Villegas, Arkanath Pathak, Harini Kannan, Dumitru

Erhan, Quoc V Le, and Honglak Lee. High fidelity video

prediction with large stochastic recurrent neural networks.

In NeurIPS, 2019. 7

[85] Ruben Villegas, Jimei Yang, Seunghoon Hong, Xunyu Lin,

and Honglak Lee. Decomposing motion and content for

natural video sequence prediction. In ICLR, 2017. 6

[86] Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba.

Generating videos with scene dynamics. In NeurIPS, 2016.

2

[87] Carl Vondrick and Antonio Torralba. Generating the future

with adversarial transformers. In CVPR, 2017. 2

[88] Jacob Walker, Kenneth Marino, Abhinav Gupta, and Mar-

tial Hebert. The pose knows: Video forecasting by generat-

ing pose futures. In ICCV, 2017. 2

[89] John YA Wang and Edward H Adelson. Representing mov-

ing images with layers. TIP, 1994. 2

[90] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Guilin Liu,

Andrew Tao, Jan Kautz, and Bryan Catanzaro. Video-to-

video synthesis. In NeurIPS, 2018. 2, 6, 19

[91] Yunbo Wang, Zhifeng Gao, Mingsheng Long, Jianmin

Wang, and S Yu Philip. PredRNN++: Towards a resolution

of the deep-in-time dilemma in spatiotemporal predictive

learning. In ICML, 2018. 7

[92] Yunbo Wang, Lu Jiang, Ming-Hsuan Yang, Li-Jia Li, Ming-

sheng Long, and Li Fei-Fei. Eidetic 3D LSTM: A model for

video prediction and beyond. In ICLR, 2019. 7

[93] Yunbo Wang, Mingsheng Long, Jianmin Wang, Zhifeng

Gao, and Philip S Yu. PredRNN: Recurrent neural net-

works for predictive learning using spatiotemporal lstms.

In NeurIPS, 2017. 7

[94] Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and Eero P.

Simoncelli. Image quality assessment: from error visibility

to structural similarity. TIP, 2004. 5

[95] Dirk Weissenborn, Oscar Täckström, and Jakob Uszkoreit.

Scaling autoregressive video models. In ICLR, 2020. 1

[96] Bohan Wu, Suraj Nair, Roberto Martin-Martin, Li Fei-Fei,

and Chelsea Finn. Greedy hierarchical variational autoen-

coders for large-scale video prediction. In CVPR, 2021. 1

[97] Chenfei Wu, Jian Liang, Lei Ji, Fan Yang, Yuejian Fang,

Daxin Jiang, and Nan Duan. Nüwa: Visual synthesis pre-

training for neural visual world creation. arXiv preprint,

2021. 1, 2

[98] Haixu Wu, Zhiyu Yao, Jianmin Wang, and Mingsheng

Long. MotionRNN: A flexible model for video prediction

with spacetime-varying motions. In CVPR, 2021. 7

[99] Yue Wu, Rongrong Gao, Jaesik Park, and Qifeng Chen.

Future video synthesis with object motion prediction. In

CVPR, 2020. 1, 2, 6, 7, 19, 21

[100] Yue Wu, Qiang Wen, and Qifeng Chen. Optimizing video

prediction via video frame interpolation. In CVPR, 2022.

1, 2, 6, 7, 19

[101] Jonas Wulff and Michael J Black. Efficient sparse-to-dense

optical flow estimation using a learned basis and layers. In

CVPR, 2015. 2

[102] Yuwen Xiong, Renjie Liao, Hengshuang Zhao, Rui Hu,

Min Bai, Ersin Yumer, and Raquel Urtasun. UPSNet: A

unified panoptic segmentation network. In CVPR, 2019. 19

[103] Wilson Yan, Yunzhi Zhang, Pieter Abbeel, and Aravind

Srinivas. VideoGPT: Video generation using VQ-VAE and

transformers. arXiv preprint, 2021. 1

27



[104] Charig Yang, Hala Lamdouar, Erika Lu, Andrew Zisser-

man, and Weidi Xie. Self-supervised video object segmen-

tation by motion grouping. In ICCV, 2021. 2, 3

[105] Vickie Ye, Zhengqi Li, Richard Tucker, Angjoo Kanazawa,

and Noah Snavely. Deformable sprites for unsupervised

video decomposition. In CVPR, 2022. 2

[106] Yufei Ye, Maneesh Singh, Abhinav Gupta, and Shubham

Tulsiani. Compositional video prediction. In ICCV, 2019.

2

[107] Zhichao Yin and Jianping Shi. Geonet: Unsupervised learn-

ing of dense depth, optical flow and camera pose. In CVPR,

2018. 19

[108] Wei Yu, Yichao Lu, Steve Easterbrook, and Sanja Fidler.

Efficient and information-preserving future frame predic-

tion and beyond. In ICLR, 2020. 7

[109] Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shecht-

man, and Oliver Wang. The unreasonable effectiveness of

deep features as a perceptual metric. In CVPR, 2018. 5

[110] Yunzhi Zhang and Jiajun Wu. Video extrapolation in space

and time. In ECCV, 2022. 6

[111] Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva,

and Antonio Torralba. Places: A 10 million image database

for scene recognition. TPAMI, 2017. 5, 9, 20

[112] Tinghui Zhou, Shubham Tulsiani, Weilun Sun, Jitendra Ma-

lik, and Alexei A Efros. View synthesis by appearance flow.

In ECCV, 2016. 2

[113] Yi Zhu, Karan Sapra, Fitsum A Reda, Kevin J Shih, Shawn

Newsam, Andrew Tao, and Bryan Catanzaro. Improving

semantic segmentation via video propagation and label re-

laxation. In CVPR, 2019. 19

28


