
We present the following items in the Appendix:

• The thin-plate splines warp computation (Section A) and its inverse (Section B)

• The detailed formulation for the semantics-aware refinement step (Section C)

• The layer occlusion model (Section D)

• A stochastic extension of our method (Section E)

• Detailed architectural choices for each of WALDO’s modules (Section F)

• More qualitative samples on nonrigid scenes (Section G)

• The influence of the choice of the pretrained segmentation and optical flow models (Section H)

• An ablation study of our inpainting strategy (Section I)

• Further information about our implementation and the overall training process (Section J)

• A statement about the societal impact of this project (Section K)

• A qualitative study of our approach (Section L)

A. Thin-plate splines warp computation

Figure A1. Thin-plate splines transformation mapping points from

C1 onto C2 applied to an arbitrary point p using parameters (T, U).

For clarity, vectors (or points) are denoted by bold face

lower case letters, and matrices are denoted by bold face

upper case letters throughout this presentation. Let p =
(x, y, 1)⊺ be a point in homogeneous coordinates, and

C1 and C2 be two sets of such points in R
3×L, which

we refer to as control points, with L the (fixed) number

of points in each set. The thin-plate splines (TPS) [9]

transformation which maps p onto p12 writes:

p12 = Tp+Uφ(p,C1), (5)

where φ(p,C1) = [k(p,p1)]p1∈C1
is a L-dimensional vector, and (T, U) are TPS parameters in the form of matrices of

dimension 3×3 and 3×L respectively. The transformation is decomposed into a global affine one (through T) and a local

non-affine one (through U and φ). The kernel function k is defined by k : (p,q) → ∥p−q∥22 log ∥p−q∥2 and materializes

the fact that the TPS transformation minimizes the bending energy. The 3(3 + L) TPS parameters are found using the

constraint that points from C1 should be mapped onto points from C2 using (5). This yields a system of 3L equations to

which Bookstein adds 9 extra ones, as explained in [9], which we formulate as:

C1U
⊺ = 03×3. (6)

By applying (5) on pairs of points from C1 and C2, and using extra constraints (6), we obtain the TPS parameters (T, U):

[

T⊺

U⊺

]

= ∆(C1)
−1

[

C2
⊺

03×3

]

, ∆(C1) =

[

C1
⊺ Φ(C1,C1)

03×3 C1

]

, (7)

where Φ(C1,C1) is a L×L matrix obtained by stacking φ(p1,C1) for all points p1 in C1.

Hence, computing the TPS parameters amounts to inverting a (L + 3)× (L + 3) matrix, ∆(C1). Since doing that for

each new transformation is impractical, we use a fixed grid of control points associated with each layer for C1, as a proxy to

compute the flow between pair of frames. By fixing the value of C1, the corresponding matrix inversion is done only once

for the whole training; and we are still able to model different deformations by setting C2 to different values. We note that,

once ∆(C1)
−1 has been computed, sampling the warp w associated with a new C2 is done by finding the corresponding

TPS parameterization using (5), and by sampling the deformations for each point p in a dense grid J1, HK×J1,W K using

(7), where the spatial resolution H×W can be arbitrarily large. Moreover, this process is fully differentiable with respect

to C2 and each point p as it involves simple algebraic operations. In the main paper, C1 and C2 correspond to the regular

grid of control points gi, associated with layer i, and its deformation pit at time step t respectively. The warp wi
t, also in

the main paper, corresponds to the inverse transformation to the one presented here, and associates with every point p12

corresponding to a pixel of the image (right side in Figure A1) the corresponding point p in object coordinates (left side).

However, computing the inverse transformation cannot be achieved by simply switching the roles of C1 and C2, since C1

have to be kept constant, which is why we resort to warp inversion whose simple formulation is detailed in the next section.
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B. Inverse warp computation

Let w be a warp in R
2×H×W (where H×W is a given spatial resolution), which we could also consider as a mapping from

R
2 to R

2, where w(p) is the geometric transformation of a point p sampled on the grid J1, HK×J1,W K. Such a mapping is not

surjective with respect to the grid, that is, all the cells in the grid are not necessarily reached by w. As a result, we approximate

the inverse warp w−1 by the pixel-accurate inversion in cells for which such a direct mapping exists and use interpolation for

filling others, starting from the cardinal neighbours of already inverted cells, and iteratively filling the remaining ones. The

warp w−1 may need to point out of the grid for some cells, e.g., when an object moves out of the frame. However, this cannot

be extracted from w which is only defined on the grid. To avoid interpolating wrong values in these cells, we only invert w
in those which are close (as per a given threshold) to the ones initially reached by w, and make others point to an arbitrary

position outside of the grid layout. Finally, the same reasons which justify that training errors can backpropagate through a

spatial transformer [42] also apply here.

C. Semantics-aware refinement

We now describe in more details the semantics-refinement step introduced in the main body of the paper. Let mt be a soft

mask in [0, 1]H×W at a given time step t in J1, T K, and c be a soft class assignment in [0, 1]C , both of them predicted for the

same layer, and let st be an input (soft) semantic map in [0, 1]C×H×W also associated with time step t. We denote by c̄, the

mean semantic class on the spatio-temporal tube defined by the masks, which, like c, is a vector in [0, 1]C , and writes:

c̄ =
∑

t,h,w

[mt ⊙F(st, c)](h,w)/
∑

t,h,w

[mt](h,w), (8)

where ⊙ is the element-wise product, and F is a class-filtering function parameterized by c and applied to st, that is, at a

given spatial location (h,w), the result of kipping dominant classes as per c in st:

[F(st, c)](h,w) =
1

1 + kc

∑

j

⟨[st](h,w), c+ kc⟩, (9)

with kc a constant which defines the degree at which low scoring classes will be filtered out. One can set kc = 0 for full

effect and greater values for filtering less. In practice, we fix the value of kc to 0.1. Each mask mt is updated by computing

the L1 distance between the semantic map st and the mean class c̄ at every location (h,w):

[mt](h,w) = (1− ∥[st](h,w) − c̄∥1)[mt](h,w). (10)

D. Layer occlusion model

Our occlusion model is rather standard, but we include it here for completeness. Ordering scores ot are used to filter

non-visible parts in a layer i due to the presence of another layer j on top of it (i.e., when oit ≪ ojt ). The transparency mi
t of

layer i at time step t is updated as follows:

mi
t = mi

t ⊙
∏

j ̸=i

(

1−
ojt

oit + ojt
mj

t

)

, (11)

where ⊙ is the element-wise product whose right-hand side component has values between 0 (occluded) and 1 (visible).

E. Stochastic extension of WALDO

In our original description, motions produced by WALDO are purely deterministic and they converge towards the mean

of all possible future trajectories given the past. Although it is sufficient for short-term prediction, one could be interested in

modeling different behaviours for longer future horizons. For this reason, we propose an extension of WALDO to account

for the intrinsically uncertain nature of the future by allowing multiple predictions.

Our approach, illustrated in Figure E1, builds upon generative adversarial networks (GANs) [30]. We consider the future

layer prediction module as a generator which computes the future positions of control points given ones from the past. This

generator is trained jointly with a discriminator which classifies trajectories as real or fake. Both are playing a minimax

game, where the discriminator is taught to correctly distinguish real from fake trajectories, while the generator tries to fool
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Future layer
prediction

Masking

Trajectory
discrimination

Past control points

Real control points

Fake control points

Noise

Real / fake ?

Layer features

Figure E1. Stochastic future prediction. We extend the future layer prediction module of WALDO to allow the prediction of multiple

futures. The module itself is not changed, except that it now uses noise (as input and in attention modules). The major difference is that

a trajectory discrimination module is used at train time to assist the model in producing a realistic control point trajectory instead of the

mean trajectory. At inference, only the future layer prediction module is kept. See text for details.

the discriminator. Through this process we expect synthetic trajectories to gradually improve in realism and to capture

multiple modes from the underlying data distribution.

We implement the discriminator with a transformer and use the WGAN loss introduced in [3] for training. In addition

to this loss, we find that keeping the initial reconstruction term (Lp) is important for the stability of training. Moreover, we

normalize gradients from both supervision signals (reconstruction and adversarial) so that they have matching contributions.

F. Detailed architectures

We detail inner operations of each of WALDO’s modules (for the dimensions used on Cityscapes [17]).

F.1. Layered video decomposition

Table F1. Input encoding.

Stage Operation On Output size

s - - 20×128×256
f - - 2×128×256
1 Concat. s, f 22×128×256

Conv1 [3×3] 1 64×64×128
LN1 Norm. 1 64×64×128
Act1 GELU 1 64×64×128
Conv2 [3×3] 1 128×32×64
LN2 Norm. 1 128×32×64
Act2 GELU 1 128×32×64
Conv3 [3×3] 1 256×16×32
LN3 Norm. 1 256×16×32
Act3 GELU 1 256×16×32
Conv4 [3×3] 1 512×8×16

y - 1 512×8×16

Input encoding. Semantic and flow maps (s and f ) are concatenated and

go through a series of 3× 3 convolutional layers (Conv) with padding of

1 and stride of 2, each followed by layer norm (LN) and a GELU activa-

tion [35] (Act) to form downscaled features y for a given time step.

Layer feature extraction. We combine features encoded from different

time steps into (Y ), and sum them with different embeddings correspond-

ing to their temporal ordering and spatial positioning (T and P) to form in-

put (1). Layer features Zobj and Zbg are computed from input (2), which is

the concatenation of object and background embeddings (2a and 2b), them-

selves expressed as the sum of layer ordering and spatial positioning em-

beddings (S, L, O and B). The next operations consists in layer norm (LN),

self-attention (Att) to update (2) by computing queries, keys and values for

(1) but only keys and values for (2), and multi-layer perceptrons (MLP) with

GELU activations [35].

Control point positioning. We apply similar operations to predict control

points (pobj , pbg) for object and background layers at a given time step from

associated features y. A key difference with the previous module is that this one is time-independent, and that inputs (1) and

(2) play the same role in the transformer blocks. A fully-connected layer (FC) outputs the 3D position of each control point

in each of the 16 + 1 layers.

Object masking. This module predicts an alpha-transparency mask a for an object from its associated features z. It is the re-

verse process compared to the input encoding module, that is, we replace convolutions with transposed ones for progressively

upscaling feature maps z, and we decrease the size of features at each step instead of increasing it.
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Object classification. This module predicts for each object represented by z a soft class assignment c, by first averaging z
over its spatial dimensions, and then applying layer norm (LN), a fully-connected layer (FC), and a softmax activation (Act)

to output c as a categorical distribution over classes.

F.2. Future layer prediction

Past encoding. Past control points corresponding to objects (resp. the background) are transformed into vectors, each of

them paired with one layer and one time step, using a fully-connected layer FC1 (resp. FC2). We apply a pooling operation

to layer representations (Zobg and Zbg) to reduce them to a single vector representing each layer. All these vectors are

concatenated, summed with the suitable embeddings (T and P), and passed through two vanilla transformer blocks to produce

encoded features E.

Future decoding. Future control points are obtained by initializing future representations (2) with some embeddings (T and

P), and then alternating between transformer blocks with self-attention on future representations (2), and cross-attention from

past to future ones (1 and 2).

F.3. Warping, inpainting and fusion

The final component of our approach is a U-Net [68] composed of 6 downscaling layers and 6 upscaling ones, with as

many skip connections between the two branches. Each downscaling (resp. upscaling) layer divides (resp. multiplies) by 2
its input resolution using a 3×3 convolution (resp. transposed convolution) with a stride of 2, and multiplies (resp. divides)

by 2 the size of features so that intermediate features (between the two branches) are of size 512. This module outputs RGB

values to update certain regions of an image (filling missing background or object parts, adapting light effects or shadows

in other parts), a mask indicating these regions, a score (of confidence) at each pixel location to allow fusing multiple views

corresponding to the same image.

Table F2. Layer feature extraction.

Stage Operation On Output size

Y - - 4×512×8×16
(T) Embed. - 4×512×1×1
(P) Embed. - 1×512×8×16
1 Sum/Reshape Y , T, P 512×512

(S) Embed. - 1×512×4×4
(L) Embed. - 1×512×8×16
(O) Embed. - 16×512×1×1
(B) Embed. - 1×512×1×1
2a Sum/Reshape S, O 256×512
2b Sum/Reshape L, B 128×512
2 Concat. 2a, 2b 384×512

LN1 Norm. 1 512×512
LN2 Norm. 2 384×512
Att1 [512]×3 2/1 384×512
LN3 Norm. 2 384×512
MLP1 [2048, 512] 2 384×512
LN4 Norm. 2 384×512
Att2 [512]×3 2/1 384×512
LN5 Norm. 2 384×512
MLP2 [2048, 512] 2 384×512

Zobj Split/Reshape 2 16×512×4×4
Zbg Split/Reshape 2 1×512×8×16

Table F3. Control point positioning.

Stage Operation On Output size

y - - 512×8×16
(P) Embed. - 512×8×16
1 Sum/Reshape y, P 128×512

Zobj - - 16×512×4×4
Zbg - - 1×512×8×16
(S) Embed. - 1×512×4×4
(L) Embed. - 1×512×8×16
(O) Embed. - 16×512×1×1
(B) Embed. - 1×512×1×1
2a Sum/Reshape Zobj , S, O 16×512×4×4
2b Sum/Reshape Zbg , L, B 1×512×8×16
2 Concat. 2a, 2b 384×512

3 Concat. 1, 2 512×512

LN1 Norm. 3 512×512
Att1 [512]×3 3 512×512
LN2 Norm. 3 512×512
MLP1 [2048, 512] 3 512×512
LN3 Norm. 3 512×512
Att2 [512]×3 3 512×512
LN4 Norm. 3 512×512
MLP2 [2048, 512] 3 512×512

2 Split 3 384×512
FC [3] 2 384×3

pobj Split/Reshape 2 16×3×4×4
pbg Split/Reshape 2 1×3×8×16
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Table F4. Object masking.

Stage Operation On Output size

z - - 512×4×4
1 - z 512×4×4

LN1 Norm. 1 512×4×4
TConv1 [3×3] 1 256×8×8
LN2 Norm. 1 256×8×8
Act1 GELU 1 256×8×8
TConv2 [3×3] 1 128×16×16
LN3 Norm. 1 128×16×16
Act2 GELU 1 128×16×16
TConv3 [3×3] 1 64×32×32
LN4 Norm. 1 64×32×32
Act3 GELU 1 64×32×32
TConv4 [3×3] 1 1×64×64
Act4 Sigmoid 1 1×64×64

a - 1 1×64×64

Table F5. Object classification.

Stage Operation On Output size

z - - 512×4×4
1 Spatial mean z 512

LN Norm. 1 512
FC [20] 1 20
Act Softmax 1 20

c - 1 20

Table F6. Past encoding.

Stage Operation On Output size

Pobj - - 4×16×3×4×4
Pbg - - 4×1×3×8×16
1a Reshape Pobj 4×16×48
1b Reshape Pbg 4×1×128

FC1 [512] 1a 4×16×512
FC2 [512] 1b 4×1×512

Zobj - - 16×512×4×4
Zbg - - 1×512×8×16
2a Pool/Reshape Zobj 1×16×512
2b Pool/Reshape Zbg 1×1×512

3 Concat. 1a, 1b, 2a,

2b

5×17×512

(T) Embed. - 5×1×512
(P) Embed. - 1×17×512
3 Sum/Reshape 3, T, P 85×512

LN1 Norm. 3 85×512
Att1 [512]×3 3 85×512
LN2 Norm. 3 85×512
MLP1 [2048, 512] 3 85×512
LN3 Norm. 3 85×512
Att2 [512]×3 3 85×512
LN4 Norm. 3 85×512
MLP2 [2048, 512] 3 85×512

E Reshape 3 5×17×512

Table F7. Future decoding.

Stage Operation On Output size

E - - 5×17×512
1 Reshape E 85×512

(T) Embed. - 10×1×512
(P) Embed. - 1×17×512
2 Sum/Reshape T, P 170×512

LN1 Norm. 1 170×512
LN2 Norm. 2 170×512
Att1 [512]×3 2 170×512
LN3 Norm. 2 170×512
MLP1 [2048, 512] 2 170×512
LN4 Norm. 2 170×512
Att2 [512]×3 2/1 170×512
LN5 Norm. 2 170×512
MLP2 [2048, 512] 2 170×512
LN6 Norm. 2 170×512
Att3 [512]×3 2 170×512
LN7 Norm. 2 170×512
MLP3 [2048, 512] 2 170×512
LN8 Norm. 2 170×512
Att4 [512]×3 2/1 170×512
LN9 Norm. 2 170×512
MLP4 [2048, 512] 2 170×512
LN10 Norm. 2 170×512

2a Split 2 160×512
2b Split 2 10×512

FC1 [48] 2a 160×48
FC2 [384] 2b 10×384

Pobj Reshape 2a 10×16×3×4×4
Pbg Reshape 2b 10×1×3×8×16
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G. Additional visual results on nonrigid scenes

T+1 T+10 Warp T+1 T+10 Warp
Figure G2. Future prediction from T=4 frames on Taichi-HD (256 × 256). Nonrigid motions can be visualized by the associated warps,

predicted from the control points between T and T+10 (colors represent different directions).

We further illustrate (Figure G2) that the motion representation proposed in WALDO allows us to represent nonrigid

object deformations by training on Taichi-HD [73] dataset. Our approach can handle complex human motions such as

leaning forward / backward, moving one leg while keeping the other on the ground, raising individual arms...

H. Influence of the choice of the pretrained segmentation and optical flow models

The use of pretrained networks in prior works vary widely according to the level of information required by each method,

and depending on what was available at the time to extract these information. We summarize the differences in Table H1.

Table H1. Pretrained models used by different methods.

Method
Optical flow

estimation

Semantic

segmentation

Instance

segmentation
Depth estimation Object tracking

Video Frame

Interpolation

VPVFI [100] RAFT [77] - - - - RIFE [39]

VPCL [29] RAFT [77] - - - - -

Vid2vid [90] FlowNet2 [40] DeepLabV3 [14] - - - -

OMP [99] PWCNet [76] VPLR [113] UPSNet [102] GeoNet [107] SiamRPN++ [50] -

SADM [7] PWCNet [76] DeepLabV3 [14] - - - -

WALDO RAFT [77] DeepLabV3 [14] - - - -

We thus evaluate the influence of the choice of the pretrained segmentation and optical flow models to WALDO’s per-

formance. Results on Cityscapes and KITTI test set, obtained by substituting segmentation model DeepLabV3 [14] with

MobileNetV2 [70] or ViT-Adapter [15], and optical flow model RAFT [77] with PWCNet [76], are presented in Table H2.

Table H2. Ablation studies of optical flow estimation and semantic segmentation methods on the Cityscapes and KITTI test sets. Like in

the main paper, we compute multi-scale SSIM (×103) and LPIPS (×103) for the kth frame and report the average for k in J1,KK.

Flow Segmentation

[76] [77] [70] [14] [15]

✓ ✓

✓ ✓

✓ ✓

✓ ✓

(a) Cityscapes

K = 1 K = 5 K = 10

SSIM ↑ LPIPS ↓ SSIM ↑ LPIPS ↓ SSIM ↑ LPIPS ↓

947 062 836 122 753 175

954 055 849 111 768 165

957 049 854 105 771 158

957 050 853 105 770 159

(b) KITTI

K = 1 K = 3 K = 5

SSIM ↑ LPIPS ↓ SSIM ↑ LPIPS ↓ SSIM ↑ LPIPS ↓

856 116 760 171 697 214

859 112 756 166 692 209

867 108 766 163 702 206
866 109 767 163 703 205

Despite PWCNet [76] having approximately twice the average end-point-error of RAFT [77], using it instead of RAFT

only results in a small performance drop for video prediction with WALDO. This is in line with the conclusions of Geng et al.

in [29] who conducted a similar comparison. Moreover, replacing DeepLabV3 [14] with MobileNetV2 [70], with respective

segmentation performance of 81 and 75 in terms of test set mIoU on Cityscapes, yields only little loss of video prediction

quality. Conversely, using a more advanced segmentation model like ViT-Adapter [15], with 85 test set mIoU on Cityscapes,

does not change the results substantially. Our interpretation is that the segmentation quality is not the limiting factor for

WALDO’s performance once it has reached a sufficient level. To conclude, WALDO is quite robust to the choice of the

pretrained segmentation and optical flow models.
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I. Ablation study of the inpainting strategy

Table I1. Ablation of our inpainting strategy on the Cityscapes test set.

Adversarial inpainting [51] Temporal consistency
K = 1 K = 5 K = 10

SSIM ↑LPIPS ↓SSIM ↑LPIPS ↓SSIM ↑LPIPS ↓FVD ↓

957 049 853 105 770 158 061

✓ 957 049 854 105 771 158 057
✓ ✓ 957 049 854 105 771 158 055
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Figure I3. Visual ablation of our inpainting strategy. We start off with a method that fills in empty regions with the sole objective to minimize

the reconstruction error (∅), we then propose to leverage an off-the-shelf adversarial inpainting (adv. inp.) method [51] to improve realism,

and we finally illustrate our full strategy where we use the predicted flow to ensure the temporal consistency (temp. const.) of inpainted

regions. For clarity, these regions are indicated in the last row. Please zoom in for details.

Given that we use an off-the-shelf inpainting method [51] trained on external data [111], we assess the impact of the use

of such a model in our approach on quantitative measurements.

Results are presented in Table I1 and show that although gains in SSIM and FVD are possible, these gains remain small.

In addition, no perceptible change is observed on LPIPS. Our temporal consistency strategy, which consists in filling frames

one by one and using the predicted flow to propagate new contents into subsequent frames, allow small extra gains on the

FVD metric.

The benefits from our inpainting strategy are more visible in qualitative samples presented in Figure I3. Without adver-

sarial inpainting (∅), empty image regions are filled using a model trained to minimize the reconstruction error. We observe

that this results in blurry image parts with important artefacts. Using adversarial inpainting produces much more realistic

images when considering frames individually, but filling each of them independently is still not very natural (best viewed in

the videos included in the project webpage). Our approach for producing temporally-consistent outputs is able to solve this
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issue. For example, in the left-most sample sequence of the third row of Figure I3, we see that inpainted image parts match

between different time steps although the camera is moving.

J. Further implementation details

We follow [99] and group semantic classes which form a consistent entity together, e.g., riders with their bicycle, traffic

lights/signs with the poles, which allows us to represent those within a single object layer. We use horizontal flips, cropping,

and color jittering as data augmentation. Although we encounter signs of over-fitting in some experiments, validation curves

do not increase during training, nor after convergence. So best model selection is not necessary, and we always save the last

checkpoint. We find that a good initialization of object regions helps the layer decomposition module to reach a better opti-

mum and to converge faster. Hence, we add a warmup period during which the module is trained without flow reconstruction

(λf = 0), and then progressively increase the associated parameter during training (λf > 0) once we start having good object

proposals. Without doing so, the module tends to rely on the background layer alone to reconstruct the scene motion, which,

as a result, leads to an under-use of the object layers. We also find that removing data-augmentation in the last few epochs

when training the warping, inpainting and fusing module slightly improves the performance at inference time.

K. Societal impact

The total cost for this project, including architecture and hyperparameter search, training, testing and comparisons with

baselines has been around 25K GPU hours, with an associated environmental cost of course. On the other hand, we strive

to minimize this cost by decomposing video prediction into efficient lightweight modules, and our approach will hopefully

contribute to eventually improve the safety of autonomous vehicles, by, say, predicting the motion of nearby agents.

L. Qualitative study of WALDO

In this section, we provide qualitative samples for each of the three modules which compose WALDO.

Layered video decomposition. We illustrate in Figure L1 our strategy to decompose videos into layers as a way to build

inter-frame connections using a compact representation of motion from which we recover the dense scene flow.

We observe that objects are predicted in regions which match our pseudo ground truth, constructed from input segmenta-

tion and flow maps, even in difficult regions like the poles. Although they share the same semantic class, the three cars in the

left-most example in Figure L1 are correctly segmented into different objects. Still, it may happen that multiple objects are

merged into the same layer, or that an object is over-segmented into multiple layers (like the ego vehicle in these examples).

This is due, in part, to the limitations of our approach which indicates regions of interest for the objects, but does not impose

how they should be split among the different layers. When computing video decompositions, we also position a set of control

points associated with each layer. The delta of control points between pairs of time steps produces sparse motion vectors for

the background and the objects. We show that, although we use a small number of points, we are able to accurately recover

the dense scene flow using TPS transformations, and that motion discontinuities occur at layer boundaries as expected.

Future layer prediction. We compare in Figure L2 the scene dynamics extracted from our decomposition strategy to the

one inferred via the future layer prediction module.

We accurately reconstruct complex motions under various scenarios: when the background is static, moves towards the

camera due to the ego motion, or sideways when the car is turning; in the presence of different kinds of objects such as trucks,

cars, bikes or various road elements; and whether these objects move in the same direction or not.

Warping, fusion and inpainting. We illustrate in Figure L3 how future frames are finally synthesized.

Warping past frames to obtain future ones is not enough, as some regions may not be recovered from the past. In particular,

we see that shadows may not always be consistent with the new position of objects, e.g., for the vehicle in the bottom-right

example in Figure L3. Our fusion and inpainting strategy is able to fill empty regions with realistic and temporal-consistent

content (see also Sec I), and handles shadows reasonably well. Finally, we show that by fusing multiple views from the past

context, WALDO is able to reduce disocclusions significantly (from the grey + black to only black regions in the last row

of the figure).
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Figure L1. Visualization of the layered video decomposition. Semantic segmentation maps and optical flow maps are extracted from

RGB frames using off-the-shelf methods [14, 77]. We combine both to construct pseudo ground truths for object discovery: in white ,

moving foreground regions towards which objects are attracted; in grey , static foreground ones which remain neutral; and in black , the

background which repulses objects. We then show predicted object regions and their decomposition into layers. Each layer is tracked over

time using a small set of control points. We compute motion vectors between points in pairs of frames (here, between consecutive time

steps), and reconstruct from these and the layer masks the complex scene flow. Please zoom in for details.
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Figure L2. Visualization of future layer prediction. We use control points from the layered video decomposition as supervision. We

compare motion vectors reconstructed from these points to the ones predicted for up to time step T + 10 from a context of T=4 past

frames. The motion vectors are computed between time step T and time step t in {T +1, T +10}. Different colors correspond to different

layers. Please zoom in for details.
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Figure L3. Visualization of the warping, fusion and inpainting module. We use the layer decomposition computed on a whole video to

reconstruct the last 10 frames using the T = 4 first ones as context. This is done by warping, inpainting and fusing different views from

the context. We compare real frames, warped ones, and fused/inpainted ones. We also illustrate the effect of disocclusion, by showing in

the last row, in black , regions which are not visible in any frame of the context, and, in grey , those which are not visible in some frames

but visible in others. Please zoom in for details.
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[95] Dirk Weissenborn, Oscar Täckström, and Jakob Uszkoreit.

Scaling autoregressive video models. In ICLR, 2020. 1

[96] Bohan Wu, Suraj Nair, Roberto Martin-Martin, Li Fei-Fei,

and Chelsea Finn. Greedy hierarchical variational autoen-

coders for large-scale video prediction. In CVPR, 2021. 1

[97] Chenfei Wu, Jian Liang, Lei Ji, Fan Yang, Yuejian Fang,

Daxin Jiang, and Nan Duan. Nüwa: Visual synthesis pre-
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