
In this supplementary material, we first provide a brief
description of the datasets used in our experiment Section
(Section A). Next, the proof of Theorem 1 is provided in
Section B. In Section C, we conduct ablation studies about
the detectors’ robustness towards unseen corruptions. Be-
sides, we discuss the limitations of our proposed method in
Section D. Finally, in Section E, we graphically illustrate
the benefits of applying our QAD for deepfake detection
problems.

A. Datasets
We describe here seven popular benchmark deepfake

datasets used to verify our proposed QAD:

• NeuralTextures. Facial reenactment is a video re-
rendering approach that uses the Neural Textures [58]
technique. This method employs neural textures,
which are learned feature maps placed on top of 3D
model proxies, as well as a deferred neural renderer.
The NeuralTextures dataset used in our study provide
facial alterations to the mouth region, while the rest of
the face remains unchanged.

• Deepfakes. Each autoencoder in the DeepFakes
dataset is trained on the source face and the target face
separately before encoding the data. An artificial face
is created by using the decoder trained on the target
face to decode the embedding representation of the
source face. Note that though DeepFakes originally re-
ferred to a particular face swapping technique, the term
has now come to apply to AI-generated facial modifi-
cation approaches in general.

• Face2Face. Face2Face [59] is a method of real-time
facial recreation in which the identity of the target in-
dividual is maintained while their expression mimics
that of the source. More specifically, a series of man-
ually chosen key-frames is used in conjunction with a
flexible model-based bundling strategy to recover the
identification associated with the target face. Target
backdrop and illumination are preserved while expres-
sion coefficients from the source face are transmitted.

• FaceSwap. FaceSwap [6] is an easy-to-use program
based on the visual architectures of the faces being
swapped. To create a 3D representation of a person’s
face, 68 individual landmarks on the face are taken into
account. Finally, it does color correction after project-
ing the facial areas back to the target face by reducing
the pair-wise landmark errors.

• FaceShifter. FaceShifter [34] is a two-step face-
swapping system. The first step employs a generator
with Adaptive Attentional Denormalization layers and

an encoder-based multi-level feature extractor for a tar-
get face. In particular, the Adaptive Attentional Denor-
malization creates a synthetic face by fusing a person’s
identity with their physical characteristics. To improve
face occlusions, they then created a unique Heuristic
Error Acknowledging Refinement Network in the sec-
ond phase.

• CelebDFv2. CelebDFv2 [67] is a large, difficult
dataset for deepfake forensics. It contains 590 original
YouTube videos with subjects of various ages, ethnic
backgrounds, and genders, as well as 5,639 DeepFake
videos. The synthesized videos are generated by the
Deepfake synthesis algorithm, followed by several re-
fining steps targeting specific visual artifacts such as
low resolution, color mismatch, and temporal flicker-
ing.

• Face Forensics In the Wild (FFIW10K). FFIW10K
consists of 10,000 forgeries videos of high quality,
with an average of three human faces every frame.
Each video is created using one of three face-swapping
techniques: DeepFaceLab [44], FS-GAN [42], and
FaceSwap [6], in order to increase the variety of ma-
nipulated videos.

For FaceForensics++ datasets, we follow the same prepro-
cessing step as in ADD [32] for each modality. And, with
a 3-tuple quality modality (raw, c23, and c40) in our ex-
periment, we have 276,480, 53,760, and 53,750 for train-
ing, validation, and testing, respectively. Similarly, for
both CelebDF-v2 and FFIW10K datasets, we used 360,000,
49,200, and 49,200 images for training, validating, and
testing, respectively. To ensure the fair comparison, faces
cropped from videos are resized to 128× 128, then prepos-
sessed to the desired input size of each benchmark detector,
e.g., 299× 299 for XceptionNet.

B. Proof of Theorem 1
Let the optimization function be L(f(x), y) = 1 −

σT (f(x, y)), where σT is the softmax function with tem-
perature T > 0:

σT (f(x), y) =
exp(f(x, y)/T )∑2
k=1 exp(f(x, k)/T )

. (11)

We introduce a function class ΦW ⊆ [0, 1]X×Y from
the distribution of raw images: ΦW = {(xr, y) 7→
L(f(xr), y) : f ∈ F}.

Let ν ∈ {1, 2, ..., log2(n)} and τν = 22−ν , and we de-
fine function classes as follows:

Φν = {(xc, y) 7→L(f(xc), y) :
ED [|σT (f(xr))− σT (f(xc))|] ≤ τν}.

(12)



For any L ∈ Φν , and δ ∈ (0, 1), with probability
at least 1 − δ, the classical generalisation bound with the
Rademacher complexity [2, 40] is defined as follows:

E[L(f(xc), y)] ≤ ED[L(f(xc), y)] + 2RD(Φν)

+O

(√
log(2/δ)

2n

)
,

(13)

where

RD(Φν) =
1

n
Eπ

[
sup
L∈Φν

n∑
i=1

πiL(f(xc), y)

]
, (14)

and π1, ..., πn are i.i.d. Rademacher random variables with
P (πi = 1) = P (πi = −1) = 1

2 . The Rademacher com-
plexity RD measures the rate that the empirical risk con-
verges to the population risk.

Moreover, we also have:

RD(Φν) =
1

n
Eπ

[
sup
L∈Φν

n∑
i=1

πiL(f(xc), y)

]

=
1

n
Eπ

[
sup
L∈Φν

n∑
i=1

πi(L(f(xc), y)− L(f(xr), y)

+ L(f(xr), y))
]

≤ 1

n
Eπ

[
sup
L∈Φν

n∑
i=1

|πi||L(f(xc), y)− L(f(xr), y)|

]

+
1

n
Eπ

[
sup

L∈ΦW

n∑
i=1

πiL(f(xr), y)

]
≤ τν +RD(ΦW)

(15)

Replacing Eq. 15 into Eq. 13, we have:

E[L(f(xc), y)] ≤ED[L(f(xc), y)] + 2τν

+ 2RD(ΦW) +O

(√
log(2/δ)

2n

)
.

(16)

In addition, for every L(f(xc), y)), there always exists
τν , such that:

τν ≥ ED [∥ σT (f(xr))− σT (f(xc)) ∥] ≥
1

2
τν−21−log2(n).

(17)
Then

τν ≤
4

n
+ 2ED [∥ σT (f(xr))− σT (f(xc)) ∥] (18)

Now, Eq. 16 can be rewritten as:

E[L(f(xc), y)] ≤ED[L(f(xc), y)] +
8

n
4ED [|σT (f(xr))− σT (f(xc))|]

+ 2RD(ΦW) +O

(√
log(2/δ)

2n

)
.

(19)

Next, we rewrite the loss function for a compressed im-
age, xc, as follows:

L(f(xc), y) =
∑

i ̸=y exp(f(xc, i)/T )∑2
i=1 exp(f(xc, i)/T )

=
1

1 + exp(f(xc,y)/T )∑
i̸=y exp(f(xc,i)/T )

=
1

1 + exp(f(xc, y)/T − ln
(∑

i ̸=y exp(f(xc, i)/T )))

= s
(
−f(xc, y)/T + ln

(∑
i ̸=y

exp (f(xc, i)/T )
))
, (20)

where s(·) is the sigmoid function. However, note that the
second term in the sigmoid function of Eq. 20 belongs to
the family of Log-Sum-Exp (LSE) function, and s(·) is a
monotonically increasing function. Then, we have:

L(f(xc), y) ≥ s
(
−f(xc, y)/T + f(xc, ỹ)/T

)
, (21)

where ỹ = argmaxi ̸=y f(xc, i). Since we always have
s(t) ≥ 1

2 I(t ≥ 0),∀t ∈ R, then

s
(
−f(xc, y)/T+f(xc, ỹ)/T

)
≥

1

2
I
(
−f(xc, y)/T + f(xc, ỹ)/T ≥ 0

)
,

(22)

or

2L(f(xc), y) ≥ I
(
f(xc, y)/T ≤ f(xc, ỹ)/T

)
= I
(
ŷ(xc) ̸= y

)
.

(23)

Combining Eq. 19 and Eq. 23,

E [I{ŷ(xc) ̸= y }] ≤ 2E[L(f(xc), y)]

≤ 2ED[L(f(xc), y)] +
16

n
8ED [∥ σT (f(xr))− σT (f(xc)) ∥]

+ 4RD(ΦW) +O

(√
log(2/δ)

2n

)
. (24)



As softmax is a L − Lipschitz function [14] with L =
1/T , we obtain:

E [I{ŷ(xc) ̸= y }] ≤ 2ED[L(f(xc), y)] +
16

n
8

T
ED [∥ f(xr)− f(xc) ∥]

+ 4RD(ΦW) +O

(√
log(2/δ)

2n

)
.

(25)

C. Additional Experiments
Robustness against unseen corruptions. Although our

QAD does not intend to defend against all image corrup-
tion types, we investigate the robustness of our model and
other detectors under unseen perturbations. All defenders
in our experiment are trained on FaceForensics++ [50] in-
cluding five typical deepfakes: NeuralTextures, DeepFakes,
Face2Face, FaceSwap, and FaceShifter, with their quality
modalities: raw, c23, and c40. In the inference phase,
we apply five operations with five severity levels, as given
in [28]: saturation, contrast, block-wise distortion, white
Gaussian noise, and blurring. The results are indicated in
Fig. 6. Although none of the perturbations are included in
the training phase, generally, our proposed QAD-E achieves
the best robustness compared to previous SoTA approaches.
One may notice that MAT [69] is a competitive defender; it
obtains more robustness in the worst case by using a large
input size of an image, i.e., 380 × 380, which can allevi-
ate the perturbations’ effects. Finally, we believe that our
method can be generalized to different corruptions when in-
cluding them in the training phase, making detectors more
robust. However, this is out of our study’s scope, which
mainly targets deepfake compression.

D. Limitations
We can point out two limitations of QAD. First, our pro-

posed method relies on the existence of aM -tuple of quality
modalities in the training dataset. While this requirement in
the research environment is usually satisfied, a few deep-
fake datasets contain only videos in different qualities and
conditions, such as DFDC [9]. Therefore, possible future
research could focus on utilizing unpaired images of vari-
ous qualities to robust the deepfake detector.

Secondly, as we target detecting deepfake in multi-
quality and we did not mining fine-grained deepfake arti-
facts as in [69], our QAD can be less generalized when val-
idating across datasets. As shown in Table 6, we trained all
detectors on five FaceForensics++ [50] datasets with their
three versions: raw, c23, and c40. In the inference phase, we
test the pre-trained models on DFDC [9] and WildDeepfake

Method

Training set Test set

FF++ DFDC WildDeepfake

ACC AUC ACC AUC ACC AUC

MesoNet [1] 61.6 65.6 60.3 71.4 54.4 55.8

Rössler et al. [50] 79.4 86.4 57.6 66.0 61.1 66.4

F 3Net [45] 75.4 84.2 54.1 66.4 58.9 64.5

MAT [69] 77.3 86.8 65.1 71.9 63.6 71.0

Fang & Lin [11] 80.7 89.0 63.2 70.2 63.1 67.7

SBIs [53] 68.9 86.0 60.5 70.9 59.2 65.5

QAD-R 85.3 93.4 61.4 67.0 62.5 68.9

QAD-E 87.8 95.6 56.5 65.3 65.5 74.7
Table 6. Cross-validation performance of models that trained on
FF++ and validated on DFDC and WildDeepfake datasets.

[71] datasets. While our QAD, especially when integrat-
ing with EFFICIENTNET-B1, outperforms previous works on
the WildDeepfake, it still needs to improve on the DFDC
dataset. Our future work will focus on designing a good
metric learning framework that can be generalized towards
both input quality and cross-domain deepfakes.

E. Grad-CAM Results
Gradient-weighted Class Activation Mapping (Grad-

CAM) [52] applies gradients from a high-probability pre-
diction class to a lower level convolutions layer, resulting
in a coarse localization map that highlights critical loca-
tions in the image. Positive layer outputs and higher gra-
dient values generate more activation areas, which are il-
lustrated in red in Fig. 7 and Fig. 8. On the other hand,
negative pixels or low gradients produce fewer activation
regions, which are represented in blue. In this experiment,
we visualize RESNET50 baseline and our QAD-R on the
five FaceForensics++ datasets: NeuralTextures, Deepfakes,
Face2Face, FaceSwap, FaceShifter, and explain the benefits
of our training frameworks as follows:

• Consistently activating important regions across
quality modalities. Since RESNET-50 is trained with-
out any regularization, it considers images of different
quality as different images. Therefore, the activation
regions can vary across quality modalities, which is
indicated by the red arrows in Fig. 7, resulting in a
large proportion of wrong predictions in low-quality
images. In contrast, our QAD utilizes the HSIC to
maximize the dependence between quality modalities,
it regulates activation regions to be similar, ensuring
its generalizability for detecting different quality deep-
fakes, as show in Fig. 7.
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Figure 6. Classification performance (AUC) of deepfake detectors under various corruptions with different severity levels.

• Expanding attention regions in low-quality images.
Under heavy compression, subtle differences and arti-
facts for distinguishing deepfakes can be diminished.
As we can observe in Fig. 8, RESNET50 activates
different regions, resulting in inconsistent prediction
among quality modalities. Meanwhile, our QAD by
utilizing the AWP assists in enlarging activation re-
gions on the low-quality images, which are indicated
by the green circles in Fig. 8. Therefore, it accumu-
lates information from several regions inside the low-
quality image to make an overall prediction, making
the detector more accurate.



Figure 7. Grad-CAM activation maps of deepfake images from NeuralTextures, DeepFakes, Face2Face, FaceSwap and FaceShifter dataset.
The red arrows indicate the inconsistent activation regions created by the RESNET50 baseline. The green arrows indicate the re-corrected
activation regions created by our QAD framework.



Figure 8. Grad-CAM activation maps of deepfake images from NeuralTextures, DeepFakes, Face2Face, FaceSwap and FaceShifter dataset.
In contrast with inconsistent or wrong activation regions from the baseline, our QAD can enlarge the activation regions in the low-quality
images and reconcile them with other quality modalities.


