Supplementary Material

1. Introduction

In this supplementary material, we elaborate on the DetermiNet diagnostic dataset by detailing the ground truth correction function, providing further analysis of our Oracle, MDETR [1], GLIP[4] and OFA [3] model predictions, as well as presenting more examples for each determiner.

2. Correcting Ground Truth

Certain determiners (such as "an") afford multiple correct solutions. For example, in an image with three apples (A, B, C) and a caption specifying the query "an apple", the prediction should contain only one bounding box that identifies any one apple (A or B or C).

The ground truth annotation used during model training comprises of only one bounding box, randomly tagged to one of the three apples (*e.g.* A). During the evaluation phase, the model might predict one bounding box to identify a different apple (*e.g.* B) that might not correspond to the ground truth bounding box (*i.e.* A). Since the model correctly identified the object and quantity, this must translate to 100% AP if there is perfect object detection.

To correct for multiple possible solutions, all the possible correct ground truth annotations (A, B, C) were compared against the model prediction (B). The apple with the highest IoU while exceeding the IoU threshold of 0.5 (*i.e.* B) will be chosen to be the new ground truth instead of the original ground truth (*i.e.* A). If the maximum IoU did not cross the threshold, the ground truth annotation will not be modified.

This complexity of evaluating multiple correct solutions extends to the following determiners, whose ground truth annotations were modified according to the concept defined for each determiner – "a", "an", "the", "either", "any", "this", "that", "some", "many", "few", "several" and "half".

3. Model prediction analysis

In this section, we analyse each model's predictions. Table 1 shows the number of corrected ground truth annotations as well as the number of predicted annotations by each model. The number of bounding box predictions by the oracle is almost similar to the ground truth. However, both GLIP and MDETR predict more bounding boxes than the ground truth annotations while OFA predicts far fewer bounding boxes compared to the ground truth annotations.

Table 2 illustrates the overall confusion matrices. Confusion matrices were generated after filtering for predicted bounding boxes with prediction scores more than 0.5. The sum of the true positives and false negatives equal the number of ground truths, while the sum of false and true positives will equal the number of predictions.

rable 1. Number of ground truth annotations and predictions	Table	1. Number	of ground	truth	annotations	and	predictions
---	-------	-----------	-----------	-------	-------------	-----	-------------

Model	Ground truth	Predictions
Random	134,775	400,031
Oracle	133,270	135,152
OFA[3]	127,856	50,000
GLIP[4]	135,562	997,545
MDETR [1]	138,613	178,869

Table 2. Confusion matrix averaged over IoU=0.50:0.95, where FN, FP, TP stand for False Negative, False Positive and True Positive respectively.

	FN	FP	ТР
Random	62,908	328,164	71,867
Oracle	17,585	19,467	115,685
OFA [3]	93,458	15,692	34,398
GLIP [4]	52,871	72,242	82,691
MDETR [1]	30,299	70,555	108,314

We perform further analysis by breaking down the confusion matrix according to each determiner, as shown in Table 3. The oracle model performed fairly well on DetermiNet. However, it incurred higher false negatives on determiners "any" and "that".

The MDETR model suffers from high false positive for determiners such as "a", "an", "either" and "half" which requires the model to select one or a few objects instead of all objects. This highlights the inability for MDETR to constrain its predictions to the correct number of objects referred to by the determiner. A similar reasoning can be used to explain the high false positives for "this" and "that" as MDETR does demonstrate spatial reasoning by achieving high true positives for "these" and "those".

The GLIP model demonstrates a poorer ability to learn the determiner scheme. Specifically, it does not predict according to the quantity specified by the determiner. For example, it predicts more than one bounding box for all articles "a", "an" and "the" and single demonstratives "this" and "that", but does not predict all bounding boxes for the objects specified by "all", "no", "both" and "neither". In addition, it does not learn possessives "my" and "your" though it learns to choose all objects on the tray with "our". Hence, although GLIP performs better than OFA, it struggles to learn the determiner scheme as well as MDETR.

The confusion matrices support our conclusion that current SOTA models struggle to learn DetermiNet as they do not constrain their predictions according to the determiner scheme. Models like MDETR and GLIP predict more bounding boxes than required, incurring high false positives. Conversely, single output models like OFA predict one instead of multiple bounding boxes and are thus unable to quantify multiple objects, incurring high false negatives.

Determiner		Oracle			MDETR			GLIP	
	FN	FP	TP	FN	FP	TP	FN	FP	TP
a	728	449	1272	438	2487	1562	1468	3160	532
an	627	487	1373	354	2353	1647	1571	3175	429
the	155	146	1845	447	558	1553	1996	3372	4
my	993	1109	3023	457	518	3551	1185	3438	2822
your	1416	1627	2587	1390	3138	2545	1951	4141	1984
our	1965	3042	6066	1833	4695	6140	2473	3856	5500
this	958	537	1042	220	2252	1780	682	4759	1318
that	1039	713	961	604	2719	1396	991	5104	1009
these	523	986	5482	685	721	5389	1024	3637	5050
those	693	1080	5331	1825	2974	4148	2226	4556	3747
any	1162	76	1150	1347	1459	4521	1515	2014	2780
alĺ	194	241	6841	1515	3057	5410	3532	1739	3393
no	197	246	5761	1311	2403	4635	3259	2076	2687
every	51	108	7973	1756	2928	6267	2765	1418	5258
each	45	118	6982	1543	2282	5527	2908	1649	4162
few	120	59	4771	1093	1467	3885	2672	2081	1724
several	88	1237	13334	2570	6637	9403	2314	2249	9092
many	26	88	16937	3713	8009	13237	3875	1934	12886
some	344	1054	7274	1983	4994	6982	2625	2688	6201
both	57	61	3943	875	1143	3125	3403	2603	597
neither	51	66	3949	876	1305	3124	3397	2520	603
either	671	379	1329	372	2420	1628	1586	2693	414
half	1659	924	2335	865	5085	3070	1388	4064	2547
little	599	817	4483	1140	3024	3846	1125	1743	3862
much	1305	460	3684	1087	2420	1628	940	1573	4092

Table 3. Confusion matrix per model averaged over IoU=0.50:0.95, FN, FP and TP refer to False Negative, False Positive, and True Positive respectively. Blue indicates highest number among FN, FP and TP.

4. Breakdown by determiner class

Table 3 shows the performance breakdown of each determiner while Table 4 provides breakdown analysis of the four determiner classes. The number of determiners included in each class is indicated in the bracket with Articles, Demonstratives, Possessives and Quantifiers having 3, 4, 3, and 15 determiners respectively.

Table 4. Performance breakdown (AP@IoU=0.5:0.95) by determiner class. Number in brackets indicates number of determiners.

Models	All (25)	A (3)	D (4)	P (3)	Q (15)
Oracle	93.5	76.4	85.3	71.3	96.9
OFA	20.6	37.5	31.5	22.9	19.3
GLIP	55.0	1.9	33.9	44.3	63.8
MDETR	70.6	62.9	72.8	71.5	70.5

The oracle achieved the highest performance across most determiner classes while MDETR achieved slightly higher results for possessives. Understanding the concept of possessives required visual information to locate an object on a tray, and pure coordinates and bounding boxes may be misleading. For example, an apple can be in front, rather than on a tray which will cause the apple's bounding box to overlap with the tray bounding box. The oracle model only received bounding boxes and not visual information. This could be a reason why MDETR could reason slightly better than the oracle model about possessives.

5. Top-1 bounding box prediction comparison

Table 5. Model performance (AP@IoU=0.5:0.95). Right column indicates model predictions constrained to single bbox prediction.

Models	AP (multiple bbox)	AP (single bbox)		
Random	9.8	1.6		
Neuro-Symbolic	93.5	34.7		
OFA	-	20.6		
GLIP	55.0	14.3		
MDETR	70.6	29.7		

Table 5 shows the performance of all models when constrained to a single bounding box prediction. As DetermiNet requires detection of multiple objects, the AP dropped for all models. OFA performs slightly better than GLIP, achieving 20.6% as compared to 14.3%. MDETR is still the best end-to-end model, achieving 29.7%.

6. Determiner representations in current VLMs

The following dendrograms show the cosine distance of the 25 determiner embeddings extracted from the text encoders of the Oracle, CLIP, BLIP-2 models. The embeddings learned by the oracle in Figure 1 is similar to the organization of determiners and the four determiner classes are grouped closely together. Conversely, determiner organization and clustering is lacking in the text encoder enbeddings of CLIP (Figure 2) and BLIP-2 (Figure 3). BLIP-2 is a current SOTA visual-language model with a GPT-3 equivalent text encoder with 6.7 billion parameters [2]. The poor separability between determiner classes demonstrate that existing VLMs insufficiently capture the semantics of determiners, motivating the need for a new large dataset that can explicitly teach determiner semantics to VLMs.

Figure 1. Dendrogram of determiner word embeddings by oracle model's FC1b layer.

Figure 2. Dendrogram of determiner word embeddings by CLIP's text encoder.

Figure 3. Dendrogram of determiner word embeddings of BLIP-2's 6.7 billion parameter text encoder.

7. Additional limitations

The caption for each sample is simply comprised of two parts, the determiner and the noun. This makes some samples ungrammatical. Examples include "all papaya juice" and "half apples". Although some of these cases can be easily fixed, we decided against it, as these fixes would be ad-hoc and only for presentation purposes, since they do not change either the logic or the learning of determiners. For example, "all" can be displayed as "all the", so that "all apples" becomes the grammatically-correct "all the apples" – but the extra "the" doesn't change the underlying logic of "all".

The possessive determiners (*e.g.* "my") are context- and noun-specific. For example, when I pass a cup to you, the possession could change from "my cup" to "your cup", but alternatively the cup could still be mine but you are borrowing it from me. It is difficult to demonstrate the various definitions and combinations of possessions using a static image. Hence, the concept of possession in DetermiNet was simplified to objects on a tray to symbolize "our", and objects on the tray closer to or further away from the camera's point of view as "my" and "your".

Everyday usage of the determiner "the" can also imply that the object was already previously mentioned, or is of common knowledge (*e.g.* "the sun"). Again, it is difficult to portray this concept using static images with no continuity between samples. Instead, we simplified the concept "the" to refer to an object that is the only one of its category in an image.

Determiners include the negative words "no" and "neither". However, the use of these within our task framing (*e.g.* "pass me no apples") is semantically incongruous. Nonetheless, we simplified these concepts and ground truth annotations to be the same as "all" and "both" respectively, and the model has to predict all or two bounding boxes for the objects of interest. Negation of an object could be conveyed using complex sentences such as "pass me all red objects but no apples", but that is beyond the current scope of this paper.

Therefore, a dynamic dataset with complex sentence structure and different contexts needs to be created for models to learn the complexities underlying possession, specific articles and negation of objects.

8. Examples for each determiner

The following section gives three examples for each determiner as well as the definitions used to generate the scenes.

8.1. "A"

"A" selects a single object referred to in the phrase and is only used with countable objects with consonant sounds. bounding boxes segmentation mask

"a carrot"

bounding boxes

segmentation mask

8.3. "The"

"The" is a definite article, thus only one object of the object being referred to is spawned in the scene, and that object is the one labelled as the ground truth bounding boxes

segmentation mask

"the carrot"

8.4. "Any"

"Any" in the singular sense such as "any apple" is similar to a/an, however, it allows the countables d uncountables. inclusion of both and

segmentation mask

8.2. "An"

"An" selects a single object referred to in the phrase and is only used with countable objects with vowel sounds. bounding boxes segmentation mask

"an onion"

"an avocado"

bounding boxes

segmentation mask

segmentation mask

"any apple"

"any blueberry juice"

"any banana"

bounding boxes

8.5. "All" / "No"

"All" and "no" are synonymous in the referencing task as "all apples are red" is equivalent to saying "no apples are not red". Hence, in the dataset, "all" and "no" both refer to all objects despite "no" implying negation. bounding boxes segmentation mask

8.7. "Each"

"Each" is similar to all however, it only includes countable objects and also requires a minimum of 2 objects to be present in the scene bounding boxes segmentation mask

"each apple" bounding boxes segmentation mask "each garlic" bounding boxes segmentation mask

"each carrot"

8.8. "My"

"My"

agent's tray

"my apple"

"my apples"

8.6. "Every"

"Every" is similar to "all" however, it only includes countable objects and also requires a minimum of 3 objects to be present in the scene bounding boxes segmentation mask

"every garlic"

"every banana"

0

bounding boxes

segmentation mask

segmentation mask

"my onions"

selects all the objects on the main

based on the camera's perspective

bounding boxes

bounding boxes

segmentation mask

8.9. "Your"

"Your" selects all the objects on the other agent's tray based on the camera perspective. bounding boxes segmentation mask

"your avocados"

bounding boxes

bounding boxes

segmentation mask

.

segmentation mask

8.11. "This"

"This" refers to a single object that is within reach of the main agent based on the camera perspective. bounding boxes segmentation mask

"this onion"

"this vegetable juice"

bounding boxes

segmentation mask

bounding boxes

8.10. "Our"

"your oranges"

"Our" is "your" + "my" in the scene, hence it includes objects in both the agents' trays. segmentation mask

"our bananas"

"our blueberry juice"

bounding boxes

segmentation mask

segmentation mask

8.12. "That"

"That" refers to a single object that is outside of the reach of the main agent based on the camera perspective. segmentation mask

"that cranberry juice" bounding boxes

"that onion"

"that egg"

bounding boxes

8.13. "These"

"These" refers to referencing a group of objects that are close by and within reach of the main agent. bounding boxes segmentation mask

bounding boxes

"these carrots"

"these onions"

8.14. "Those"

segmentation mask

segmentation mask

8.15. "Few"

In DetermiNet, we defined "few" as any 2-3 objects out of the all the objects mentioned in the phrase. This number is configurable based on the individual's own definition.

bounding boxes segmentation mask "few garlics" bounding boxes segmentation mask "few onions" bounding boxes segmentation mask

"few bananas'

8.16. "Many"

"Those" refers to referencing a group of objects that are further away and outside of the reach of the main agent. segmentation mask

"those apples"

"those onions"

"those bananas"

bounding boxes

segmentation mask

segmentation mask

In DetermiNet, we defined "many" as any 8-9 objects out of all mentioned in the phrase. This number is configurable based on the individual's own definition. bounding boxes segmentation mask

bounding boxes

bounding boxes

8.17. "Several"

In DetermiNet, we defined "several" as any 4-7 objects out of the all the objects mentioned in the phrase. This number is configurable based on the individual's own definition. bounding boxes segmentation mask

segmentation mask

"little grape juice"

8.19. "Little"

In DetermiNet,

configurable based

"little blueberry juice"

being 10-20% filled for liquids,

"little cranberry juice"

8.20. "Much"

we defined "much" as glasses being 80-90% filled for liquids, number is this configurable based on the user's own definition. segmentation mask

segmentation mask

segmentation mask

"several garlics"

8.18. "Some"

In DetermiNet, we defined "some" as any 5-6 objects for countables and 50-60% liquids for uncountables. This number is configurable based on the user's own definition. segmentation mask

"some blueberry juice"

"some cranberry juice"

bounding boxes

segmentation mask

In DetermiNet,

bounding boxes

bounding boxes

"much grape juice"

"much cranberry juice"

bounding boxes

bounding boxes

we defined "little"

on the user's

bounding boxes

as glasses

this number is

own definition.

segmentation mask

8.21. "Both" / "Neither"

"Both" and "Neither" are synonymous in the referencing task as"Both apples are red" is equivalent to saying "Neither apples are not red". Hence, "Both/Neither" indicates that out of two of the objects in the scene, we select two of them.

8.22. "Either"

"Either" indicates that out of two of the objects will select one of the object. in the scene, we seamentation mask

"either apple"

"either banana"

"either lemon"

bounding boxes

8.23. "Half"

"Half" selects half of the objects in the scene, typically, half would be phrased as "half the noun", however for simplicity for the determiner task, we omitted the "the" segmentation mask bounding boxes

"half apples" bounding boxes segmentation mask bounding boxes segmentation mask

References

- [1] Aishwarya Kamath et al. "MDETR-Modulated Detection for End-to-End Multi-Modal Understanding". In: arXiv preprint arXiv:2104.12763 (2021).
- [2] Junnan Li et al. "Blip-2: Bootstrapping languageimage pre-training with frozen image encoders and large language models". In: arXiv preprint arXiv:2301.12597 (2023).
- [3] Peng Wang et al. "OFA: Unifying architectures, tasks, and modalities through a simple sequenceto-sequence learning framework". In: International Conference on Machine Learning. PMLR. 2022, pp. 23318-23340.
- [4] Haotian Zhang et al. "GLIPv2: Unifying Localization and Vision-Language Understanding". In: Thirty-sixth Conference on Neural Information Processing Systems. 2022.

"half carrots"

"half garlics"

