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Figure S.1: Overview of our pipeline for synthesizing realistic RAW images, specifically for Q×Q patterns.

S.1. Detailed Data Synthesis for Demosaicing
All CFAs

As described in our paper, we generate synthetic ground
truth (GT) by sequentially applying a 4-step reverse Color-
related Mapping (r-CM) process. Then, we add mixed Pois-
son and Gaussian noise and performed mosaicing (i.e., CFA
patterning) on the entire image to create synthetic RAW-
like images (as shown in the blue shaded area in Fig. S.1).
The r-CM process consists of the following modules: color
tone degradation, inverse gamma correction, inverse color
correction, and inverse auto white balance functions. The
Color-related Mapping (CM) process is the inverse of the
reverse color matrix (r-CM) and can only be applied to the
output of the demosaicing (DM) model.

Note that we need to use r-CM for data synthesis on the
open-source dataset to generate GT images, while CM can

be “optionally” applied after demosaicing for better visual-
ization in our paper.

Color tone degradation. Typically, color enhancement
is performed in the latter part of the ISP chain. Therefore,
we position the color tone degradation function at the begin-
ning of r-CM. Inspired by [2], we employ a tone mapping
function that utilizes a simple inverse smoothing curve for
performing color tone degradation on open-source dataset
images during the r-CM process. Note that the color tone
enhancement function in CM is the inverse of color tone
degradation in r-CM.

Inverse gamma correction. In the ISP chain, gamma
correction is applied to image data to correct for the non-
linear perception of brightness by the human eye. We use
a gamma value setting of 2.2, which is standard for most
cameras [6, 16, 24, 17]. In r-CM, the inverse function of
gamma correction is applied, while in CM, standard gamma
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Figure S.2: The cumulative pixel value distribution of each
homogeneous pixel unit (Gr, R, B, and Gb) in 7 Q×Q CIS
RAW image samples. In our CIS RAW data, we observe
a significant difference in signal values between inner and
outer pixels in each Gr, R, B, and Gb pixel unit, which is
mainly caused by crosstalk effect.

correction is performed.

Inverse color correction. We use a color correction
function to adjust the colors captured by a camera’s sen-
sor to appear as they would to the human eye. The specific
function we used is as follows:

Rcorrected

Gcorrected

Bcorrected

 = A

R
G
B

 ,

where A is a 3x3 color correction matrix (CCM), which is
applied to the pixel values (R, G, and B) to obtain the cor-
rected RGB values (Rcorrected, Gcorrected, and Bcorrected).
We obtain the CCM information from the CIS manufactur-
ing company and apply it to our inverse color correction
function after calculating the CCM’s inverse.

Inverse auto white balance. We empirically adjusted
the gains for R, G, and B channels in the auto white bal-
ance function to make white portions of the CIS RAW ap-
pear white as perceived by the human eye. The inverse auto
white balance in r-CM is obtained by reversing the values
applied in the white balance module of the CM process.

Noise synthesis. We use the following practical mixed
Poisson and Gaussian noise model [19, 2, 25]:

xn = Poisson(γyn)/γ + ϵn,

ϵ ∼ N (0, σ2
ϵ I), n = 1, . . . , N,

(1)

where y and x are clean image and corrupted image, respec-
tively. Poisson generates pixel intensity-dependent Pois-
son noise caused by photon sensing, γ is a gain parame-
ter which depends on the sensor and analog gain. ϵ is sig-
nal independent Gaussian noise with standard deviation σ,
and N is the number of samples. DF2K-CIS train and test
datasets are generated using the following imaging parame-
ters: γ = 0.01 and σ = 0.02. DF2K-CIS with strong noise
test dataset are generated with parameters that are 4 times
larger than those of DF2K-CIS: γ = 0.04 and σ = 0.08.

S.2. Domain Gap Example: Inherent Grid Ar-
tifacts in CIS RAW

The differences in the distribution of pixels within each
pixel unit are primarily caused by ”crosstalk” effects, which
result from mutual interference of each pixel signal in CIS
hardware [9, 10, 13]. As shown in Fig. S.2, in CIS QxQ
RAW (before demosaicing), we observe that the signals in
the center of each pixel unit, especially in the R channel,
are stronger than those in the outer pixels, while the edges
of each pixel unit, particularly the four corners, are weaker.
In addition to the cause of crosstalk phenomenon, the asym-
metry between the inner and outer pixels in each pixel unit
can vary across CIS devices, and this can manifest in var-
ious forms depending on the circuit configuration, compo-
nent characteristics, product lines, and process capability of
the CIS chip. These various sources result in differences
in pixel values within each homogeneous color unit in CIS
RAW, which is a major cause of the appearance of grid ar-
tifacts in CIS RAW.

S.3. Adaptive Discriminative Filter-based
Model for Specific CFA Pattern (ADP)

S.3.1. Filter Attribution Integrated Gradients

Xie et al. [23] propose FAIG, which identifies dis-
criminative filters of specific degradation in blind super-
resolution (SR) by computing integrated gradient (IG) [22,
21] between the baseline and desired models. In FAIG,
the baseline model is denoted as θfrom and the model be-
ing updated is denoted as θto for each desired task. The
function ρ(β), where β ∈ [0, 1], represents an uninter-
rupted straight line between the baseline and target mod-
els. In that case, any certain route in ρ(β) is represented
by ρ(β) = βθfrom + (1 − β)θto, where ρ(1) = θfrom
and ρ(0) = θto. The FAIG on the continuous line space
between two models is discretized as follows:

FAIGj(θfrom, θto, x)

≈

∣∣∣∣∣ 1N [θfrom − θto]j

N−1∑
t=0

[
∂L(ρ(βt), x)

∂ρ(βt)

]
j

∣∣∣∣∣ , (2)

where N represents the total number of steps used in the
integral approximation, and N is set to 100 as in FAIG. βt

and j are t/N and the kernel index, respectively. We apply
FAIG, originally proposed for denoising and deblurring, to
multiple CFA sensor patterns in our demosaicing tasks.

S.3.2. Mask Ratio of FAIG in ADP

We choose a mask ratio (q) as 1% in ADP for each CFA
in our KLAP framework, to balance demosaicing perfor-
mance and efficiency (as shown in Sec. 4.2 and Fig. 4(b)).
Increasing q improves performance but with diminishing



Figure S.3: Performance comparisons between Baseline
UM with increased network sizes (17.1M, 19.4M, 25.5M,
34.4M, 51.7M, and 64.8M) and KLAP (Ours) with mask
ratios q% (0%, 0.1%, 0.5%, 1%, 3%, 5%, 10% and 15%, re-
spectively) on DF2K-CIS test dataset. The network size of
KLAP (Ours) with mask ratios of q% (0%, 0.1%, 0.5%, 1%,
3%, 5%, 10%, and 15%) are 17.1M, 17.2M, 17.8M, 17.8M,
19.2M, 20.5M, 23.9M, and 27.4M, respectively. Our ap-
proach produces significantly higher performance results
even with 3.5 times larger Baseline UM method.

returns and increased parameters (Tab. S.1). Compared to
Baseline UM (B.UM), our proposed method using mask ra-
tio 1% for all 4 demosaicing types requires an additional
4% of network parameters.

Furthermore, our KLAP achieves significantly better re-
sults even when increasing the size of the Baseline UM
method by 3.5 times, as shown in Fig. S.3.

Table S.1: Investigation of experiments according to KLAP
(Ours) with filter location selection ratios (i.e., mask selec-
tion ratios in FAIG [23]; q%) in the DF2K-CIS test dataset.
B.UM denotes the Baseline UM. Note that Avg. and Par.
denotes mean of all CFAs’ PSNR (dB) and the required
number of parameters (M).

Method q Ba. Qu. No. QxQ Avg. Par.
B.UM 0 41.90 41.40 41.03 41.09 41.35 17.1
KLAP 0.1 42.16 41.50 41.16 41.19 41.50 17.2
KLAP 0.5 42.20 41.71 41.38 41.38 41.67 17.4
KLAP 1 42.25 41.75 41.42 41.41 41.71 17.8
KLAP 3 42.31 41.80 41.46 41.45 41.75 19.2
KLAP 5 42.34 41.82 41.49 41.48 41.78 20.5
KLAP 10 42.38 41.88 41.55 41.53 41.83 23.9
KLAP 15 42.41 41.92 41.59 41.58 41.87 27.4

S.4. Meta-learning during Inference

S.4.1. Definition of the term “meta-test”

In our paper, we named the process of fine-tuning
with meta-learning during inference as KLAP-M. The term
“meta-test” typically refers to the process of improving per-
formance on various generalization scenarios with only a
few trials on unseen data [26, 7, 28, 14, 18, 20]. In general,
the meta-test process works in conjunction with the meta-
training process. The meta-training process optimizes the
model to improve the accuracy of meta-test samples using
source data. We use ADP in the second step of our KLAP
framework to only adjust the unimportant kernel for each
CFA demosaicing during training in order to improve the
accuracy of meta-test. This can be seen as a type of meta-
training process. In our paper, we define the process of fine-
tuning only unimportant kernel in KLAP during model in-
ference as meta-test learning to achieve robust results even
for undefined artifacts caused by CIS device features and
shooting environments.

S.4.2. Noise2Self and Pixel Binning Loss.

To aid in a more thorough understanding in our meta-
test learning process, KLAP-M, we provide a more detailed
explanation of Noise2Self (N2S) [1] loss and pixel-binning
loss in Fig. S.4 (a) and (b).

Noise2Self (N2S) loss. We choose Noise2Self [1]
among many self-supervised denoising methods [30, 29, 11,
8, 1, 3]. To calculate N2S loss, the L1 loss is computed be-
tween an output of an image inputted into KLAP, where the
empty pixels of xJc are interpolated, and xJ . In our study,
we utilize the same masking scheme for each J as outlined
in the N2S paper [1]. Each J samples a single pixel se-
lected within each 4×4 window (i.e., 6.25% of the number
of pixels in each image). In the original N2S method, the
interpolation function for xJc use a 3×3 kernel to compute
the average value of the surrounding pixels for interpola-
tion. However, we consider the characteristics of the RGB
channel and calculate the average value of the surrounding
values corresponding to that channel for interpolation. In
the case of Bayer, we set a size of window to 6×6 and use
5×5 kernel for interpolation to prevent overlap. The use of
N2S loss term has the effect of removing independent noise.

Pixel-binning loss. As mentioned in Sec. 3.1 in our pa-
per, pixel binning is applied differently depending on the in-
put pattern status of the CFA. Similarly, the proposed pixel
binning loss based on CIS domain knowledge is also ap-
plied differently according to the CFA pattern. When using
the average-based pixel binning operation (m), the Q×Q
CFA pattern is converted to Quad or Bayer pattern. Nona
and Quad patterns are converted to Bayer pattern. Note
that pixel binning operation (m) does not exist in the Bayer
pattern. The upsampling operation (U ) employs a bilinear



Figure S.4: The specific processes for calculating 2 loss functions in our proposed method, KLAP-M, which is KLAP with
meta-test learning: (a) Noise2Self (N2S) loss, and (b) Pixel-binning loss.

function to restore the original resolution, which may have
been altered due to the pixel binning operation (m).

S.5. Implementation Details
In our experiments, we use a patch size of 240×240

to cover all of Bayer, Quad, Nona, and Q×Q CFAs. The
model is trained using the ADAM optimizer with a batch
size of 32 and an initial learning rate of 2×10−4. We apply
the cosine annealing learning rate decay technique with a
minimum learning rate of 1 × 10−6. To ensure a fair com-
parison, we evaluate the proposed method on the same con-
ditions with an NVIDIA A6000 GPU using PyTorch [15].
Our architecture is similar to the NAFNet [4] architecture,
which has state-of-the-art performance in IM-based image
restoration. We use the official codes provided by the au-
thors of Chen [5] and Li [12]. In the Table 1, TKL denotes
the method of applying NAFNet-based TKL, and Chen de-
notes the method of applying MBSDN-based TKL.

S.6. Results
More results on CIS RAW. Fig. S.5 illustrates the

qualitative results of the Baseline-UM (2nd column) with
NAFNet, existing methods (Chen (3rd column), Li (4th
column)) and our proposed KLAP (5th column), evalu-
ated on the synthetic RAW (DF2K-CIS) test dataset. Also,
Fig. S.6 presents the qualitative results of prior arts (Chen
(2nd column), Li (3rd column)) and our proposed KLAP
(4th column) and KLAP-M (5th column) on the synthetic
RAW (DF2K-CIS) with ‘strong noise’ test dataset. Our
proposed KLAP method visually outperforms other state-
of-the-art methods on DK2K-CIS test dataset, and our pro-
posed KLAP-M method shows visually superior results
compared to other state-of-the-art methods on the DK2K-
CIS test with strong noise dataset, thanks to meta-learning
during inference.

Fig. S.7 shows our proposed KLAP-M inference output
on the real CIS RAW data. Before applying meta-learning
(in KLAP), artifacts exist; however, after applying meta-
learning (in KLAP-M), the artifacts are effectively relieved.
We selected 45 iterations for real RAW. Note that we ob-
served that similar results were obtained even with further
increases in iterations. Fig. S.8 presents additional KLAP-
M inference output samples and their color-related mapped
images (i.e., CM-applied version) on real CIS RAW data.

Additional evaluation on ‘another’ RAW dataset. To
further evaluate the robustness of our methods, we conduct
additional inference on another open-source RAW dataset
from the MIPI 2022 remosaic challenge [27]. This compe-
tition emphasizes Quad-to-Bayer re-mosaicing, not demo-
saicing, so the definition of ground truth (GT) differs from
our research focus. Nevertheless, we conducted inference
on the MIPI inputs using KLAP and KLAP-M, as shown
in Fig. S.9, effectively reducing visual artifacts and validat-
ing their performance. This emphasizes the robustness and
stability of our self-supervised learning approach, showcas-
ing the effectiveness of our meta-test framework for various
real sensor RAW data in real-world scenarios.
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Figure S.7: The sample of demosaiced output images of Q×Q CIS RAW (48MP) with KLAP and KLAP-M.



Figure S.8: Additional CIS RAW and its inference outputs. (a) CIS Q×Q RAW data, (b) demosaiced output images obtained
using KLAP-M inference, and (c) the same images as in (b) after applying CM (Color-related Mapping function). Note that
in (c), it can be perceptually observed that CM works well not only on synthetic RAW images but also on real CIS RAW
images.



Figure S.9: Additional inference images of CIS RAW, MIPI 2022 Quad remosaic challenge data [27] using KLAP (trained
by our synthetic dataset, DF2K-CIS) and KLAP-M. (a) demosaiced output images obtained using KLAP-M inference, and
(b) the same images as in (b) after applying CM (Color-related Mapping function). As shown in the figures above, KLAP
with meta-test learning (KLAP-M) shows robust performance in another real CIS RAW, MIPI 2022 Quad data, despite of
existence of sensor-generic unknown artifacts.


