
Supplementary Material for
INSTA-BNN: Binary Neural Network with INSTAnce-aware Threshold

Changhun Lee1 Hyungjun Kim2 Eunhyeok Park1 Jae-Joon Kim3

1 Pohang University of Science and Technology (POSTECH), Pohang, Korea
2 SqueezeBits Inc., Seoul, Korea 3 Seoul National University, Seoul, Korea

A Experimental setups
1 Experimental setup for CIFAR-10 dataset

Extensive experiments for Fig. 3 in the main paper
were conducted using ResNet-20 [3] with CIFAR-10
dataset. More precisely, we used ResNet-20 with additional
skip connections from [8] and attached PReLU after the
element-wise addition of residual path and identity short-
cut. Therefore, the convolution block structure is similar to
the block used in ReActNet [7] (Fig. 2a of the main paper).
We used AdamW optimizer [9] with a weight decay value
of 1e-4, and the networks were trained up to 400 epochs.
The initial learning rate was 0.003, and the cosine anneal-
ing schedule was used. The batch size was set to 256. We
used the weight scaling factor from [11].

2 Experimental setup for the ablation study

We used a simplified training process for the ablation
studies, in which we trained a BNN model directly from
scratch for 90 epochs without help of the pre-trained or
teacher models. Adam optimizer [6] was used with an initial
learning rate of 0.001, which is multiplied by 0.1 at epochs
40, 60, 80. Weight decay was not used, and learning rate
warmup was used for the first 5 epochs. Precision other than
1-bit and 32-bit was not used for the ablation study. Exper-
iments that produced the results in Table 1 of the main pa-
per and the rest of the supplementary material experiments
(Sec. F, G, H) also followed this setup.

B Details and training methods for the quan-
tization of SE-like modules

As mentioned in Sec. 5.1 of the main paper, we quan-
tized the weights of the SE-like modules. We followed
the fine-tuning scheme of learned step size quantization
(LSQ) [2]. We used channel-wise learnable step size for 8-
bit weight quantization and symmetric quantization (QN =
2b−1 and QP = 2b−1−1, encoding with b bits) was applied.

After the two-stage training, we obtain the conventional
BNN with binary convolution blocks and all other real-

valued components. When the SE module is used, addi-
tional 10 epochs of fine-tuning were performed with 8-bit
SE weights. The initial learning rate was 1e-4 and we used
a linear learning rate decay scheduler. We did not use the
weight decay for fine-tuning. This 8-bit SE weight quan-
tization did not cause accuracy degradation in our experi-
ments.

C Detailed rules for the computational cost
analysis

In INSTA-BNN, the additional operations are mainly
from normalizing and cubic operations. We calculated to-
tal number of opertations (OPs) as OPs = FLOPs + (BOPs /
64), following [7, 8]. In case of parameters, binary weights
are 1-bit, weights of SE-like modules are 8-bit, and other
real-valued parameters and weights are considered as 32-
bit.

We manually calculated the computation cost and pa-
rameter size of the previous methods and our proposed
INSTA-BNN. In this section, we introduce additional de-
tailed rules that we used to calculate the computation cost
of the network. First, we only counted the number of float-
ing point (FP) multiplication for the FLOPs calculation fol-
lowing the method used in [7, 8]. That is, we count one
floating point multiply-accumulate (MAC) as one FLOP, so
our FLOPs calculation includes a pair of multiplication and
addition. The same rule applies to the calculation of BOPs.

For the Batch Normalization layer, we assumed that the
layer has 2×C sets of parameters because four BN pa-
rameters can be merged into the scale and shift terms of-
fline. FP multiplication cost of BN layer is H×W×C.
However, when the Sign function directly comes after BN
layer, FP multiplication cost is removed and we only need
1×C set of parameters, following [5]. In case of using
weight scaling factor [11], the element-wise FP multipli-
cation cost of Hout×Wout×Cout is required, where the sub-
script out means the output of the convolution. However,
when a method has conv-BN layer ordering, instead of do-
ing element-wise multiplication for each scaling factor and



Figure 1. (a) Block diagram of latency-optimized INSTA-BNN-ResNet18. (b) Binary convolution block that contains the optimized
INSTA-Th and INSTA-PReLU modules. Orange block indicates the calculated E

[
x̃3

]
value in the INSTA-Th module. We can see that

E
[
x̃3

]
value is reused for the INSTA-PReLU (indicated by the yellow dotted line).

BN layer, we can first multiply analytically calculated scal-
ing factor and the merged BN scale parameter. In this way,
we can also remove one set of H×W×C element-wise mul-
tiplications. We ignored the operation cost for PReLU layer
because the cost may vary depending on the implementa-
tion, and its effect is very small compared to the real-valued
convolution cost.

Finally, we assumed that all the ResNet-based methods
use the shortcut option B reported in [3]. In addition, we
assumed that average pooling, real-valued 1x1 convolution,
and BN layer are used for the downsampling path, except
the BNN [4] case, which uses binary 1x1 convolution.

Our proposed INSTA-Th needs 4×C set of parameters
(µ̂, σ̂, α, β). For INSTA-PReLU, total five parameters
per channel (including the learned slope of PReLU) are
required. Both modules need H×W×C floating point op-
erations for normalization and 2×H×W×C floating point
operations for cubic operation. For INSTA-Th, additional
2×C operations are needed for spatial averaging and mul-
tiplying channel-wise parameters. In addition, for INSTA-
PReLU, 3×C operations are needed because we addition-
ally use 3*tanh(x/3) for INSTA-PReLU. Note that the com-
putational cost of these operations is proportional to the
channel size, which is negligible compared to the compu-
tational cost of the element-wise operations.

For the optimized INSTA-BNN structure, the feature
statistics reuse (Sec. 4.2 of the main paper) eliminates a
cubic operation for the corresponding INSTA-PReLU mod-
ule. It also removes spatial averaging thereby reducing the
number of required extra operations from 3×C to 2×C. In-
stead, two channel-wise parameters are used for the affine
transform of the reused statistics (Fig. 1b).

INSTA-Th+ and INSTA-PReLU+ further require 2C2/r
8-bit parameters for fully-connected layers of each SE-like

module (r: reduction ratio) instead of one channel-wise pa-
rameter (α). We also included the additional computational
cost caused by the SE weight quantization in total OPs cal-
culation. Due to the channel-wise step size of 8-bit weight
quantization, we need C +C/r real-valued parameters and
multiplications for each SE-like module.

D Detailed model structure of latency-
optimized INSTA-BNN

For latency-optimized INSTA-BNN models, we used the
INSTA modules from the point where the feature size is
halved for the third time in the model structure (H = 28
when input image size is 224). Fig. 1 shows the optimized
model structure of INSTA-BNN-ResNet18. In Fig. 1a, al-
though the RPReLU (INSTA-PReLU) of each conv block
comes after a shortcut is added, the diagram is presented
differently for simplicity. These latency reduction schemes
are similarly applied to the MobileNet-based INSTA-BNN.

E Analysis of feature statistics reuse in IN-
STA module

Fig. 2 shows the relationships between statistics (E
[
x̃3

]
)

of INSTA-Th and the subsequent INSTA-PReLU (Fig. 2a-
d) introduced in the main text, as well as the correlation be-
tween E

[
x̃3

]
value of INSTA-PReLU and next conv block’s

INSTA-Th (Fig. 2e-h). Each subgraph shows the correla-
tion between a pair of internal INSTA modules for each
ResNet block. We compared the E

[
x3

]
value calculated

immediately after normalization for 256 training set im-
ages. Figures are drawn using channel 0 data in this exam-
ple. We can observe that statistics (E

[
x̃3

]
) calculated from

INSTA-Th and those from the subsequent INSTA-PReLU
have high correlation (Fig. 2a-d) so that we can reuse the



y = 1.5923x + 1.3832
R² = 0.4501

-10

-5

0

5

10

15

-5 0 5 10

(e) conv2_3

y = 0.8719x + 0.3803
R² = 0.9482

-4

-2

0

2

4

6

-5 0 5

(f) conv3_3

y = 2.7054x + 1.3678
R² = 0.6373

-20

-10

0

10

20

30

40

-5 0 5 10

(g) conv4_3

y = 5.8646x + 0.7585
R² = 0.7047

-50

0

50

100

150

200

-5 0 5 10 15 20

(h) conv5_2

y = 0.8214x + 0.1214
R² = 0.9347

-10

0

10

20

30

40

-10 0 10 20 30 40 50

(a) conv2_1

y = 1.0041x - 0.0387
R² = 0.9616

-6

-4

-2

0

2

4

6

-4 -2 0 2 4 6

(b) conv3_3

y = 0.7318x + 0.0055
R² = 0.7934

-15

-10

-5

0

5

10

-20 -10 0 10 20

(c) conv4_2

y = 0.814x + 0.0054
R² = 0.9794

-20

0

20

40

60

80

-20 0 20 40 60 80 100

(d) conv5_4

Figure 2. (a)-(d) Correlation between E
[
x̃3

]
values from INSTA-Th and subsequent INSTA-PReLU. (e)-(h) Correlation between E

[
x̃3

]
values from INSTA-PReLU and next conv block’s INSTA-Th.

Range INSTA-PReLU SE (INSTA-Th+)
sigmoid(x) 0 ∼ 1 61.8 61.7
tanh(x) -1 ∼ 1 61.9 61.4

3tanh(x/3) -3 ∼ 3 62.1 61.7

Table 1. ImageNet top-1 valid accuracy (%) according to the non-
linear component of the each INSTA-PReLU and SE of INSTA-
Th+ module. Range means possible output range of each function.

statistics obtained from INSTA-Th for INSTA-PReLU. In
contrast, Fig. 2g, h show some problematic cases, in which
significant non-linearity is observed due to the intervening
PReLU. Note that there is a large difference between the x-
axis and y-axis value scales. For this reason, we do not reuse
the statistics obtained from INSTA-PReLU for INSTA-Th
of the next conv block.

F Effect of the threshold value range in
INSTA-PReLU/INSTA-TH+

We use the bounded non-linear functions in the INSTA-
PReLU, INSTA-Th+, and INSTA-PReLU+ modules to
map the threshold values in the constrained range (Fig. 4a, b
in the main paper). We evaluated three options; sigmoid(x),
tanh(x), and 3*tanh(x/3). Sigmoid is a widely used func-
tion and was used in the original SE work. However, the
output of the sigmoid is always greater than zero, and hence
it can only move the threshold to one direction from zero.
On the other hand, tanh is bidirectional. We observed that
the max value of α in Eq. (8) for the trained networks was
2.45, so that we included 3*tanh(x/3) in the options. From
the Table 1, 3*tanh(x/3) was found to be the best non-linear
function for the INSTA-PReLU, and it showed similar accu-
racy to that of sigmoid for SE module. Based on the results
of Table 1 and the observed α ranges, we used 3*tanh(x/3)
for the experiments in this paper.

Top-1 Acc. (%)
BN - sign - conv - PReLU 59.5
BN (w/o γ, β) - sign - conv - PReLU 59.0
INSTA-Th - conv - PReLU 60.5

Table 2. ImageNet top-1 accuracy comparison between the BN-
sign-conv layer ordered network with and without INSTA-Th
module. When the INSTA-Th module is used, its normalization
layer replaces a BN layer of the network.

G INSTA-Th for different block structure
In recent studies [1, 10], a different convolution block

layer order from the one used in the Bi-real-net [8] has
been used. Its layer order is BatchNorm (BN)-Sign-conv-
PReLU-⊕, where ⊕ means element-wise addition of resid-
ual path and identity shortcut starting just before BN. To
verify the versatility of the proposed method, we also tested
INSTA-Th to this block structure. One thing to note is that
the normalization layer inside the newly added INSTA-Th
comes immediately after the BN of the original structure
(BN - Normalization - Sign with modified TH). In this
case, the scale and shift effect of the original BN layer may
be inhibited, and the meaning of the added normalization
layer is also faded. To handle this, we tried to merge BN and
the newly added normalization layer (replacing the original
BN with the proposed INSTA-Th), and its result is in Ta-
ble 2. Removing the scale and shift from the original BN
brought a slight decrease in accuracy (row 1 and 2), but
merging BN and normalization layer of INSTA-Th shows
the improved threshold controlling ability (row 1 and 3).
This suggests that the proposed INSTA-Th plays a simi-
lar role to the shift of BN, but it works instance-wise and
improves the performance further. This result supports the
effectiveness of the proposed INSTA-Th in various block
structures.



0.1

0.12

0.14

0.16

0.18

0.2

0.22

S0
B0

S0
B1

S1
B0

S1
B1

S2
B0

S2
B1

S3
B0

S3
B1

In
co

n
si

st
en

cy
 R

at
io

network layer

Baseline (ReActNet) INSTA-BNN

Figure 3. Comparison of the inconsistent sign ratio between the
baseline and the proposed INSTA-BNN. S and B represent the
stage and the block of ResNet structure. Note that ResNet-18 con-
sists of four stages with two blocks each, and therefore S0 B0 con-
tains conv2 and conv3 layers.

H Discussion: Reducing the inconsistent sign
problem of binary convolution

CI-BCNN [12] discussed that one of the key reasons for
the quantization errors in BNN is the sign mismatch be-
tween the binary convolution results and the counterpart
full-precision results (sign(Wr ⊗Ar) ̸= sign(Wb ⊕Ab)).
Then they tried to solve the inconsistency by imposing the
channel-wise priors on the feature maps. Meanwhile, tun-
ing the threshold is a direct way of changing the sign of bi-
nary activation, which consequently affects the sign of the
binary convolution output. Hence, we checked the incon-
sistent ratio (ratio of pixels with inconsistent signs) for our
baseline ReActNet and the proposed INSTA-BNN, and ob-
served that the ratio was consistently lower in the INSTA-
BNN (Fig. 3). The results demonstrate that our INSTA-
BNN has the ability to reduce the quantization error by
controlling the binary threshold without using channel-wise
priors.

I Visualization results of t-SNE
We compared three models based on ResNet-20 having

different threshold determination methods: Sign function
with a constant threshold of zero, RSign [7] function, and
INSTA-Th. Fig. 4 shows t-SNE visualization of features
extracted before the classifier of each trained model. For
the INSTA-Th case (Fig. 4c), cat (red) and dog (brown)
classes, which are relatively difficult to distinguish in other
models, are better distinguished. Also, deer (purple) and
bird (green) are relatively well clustered in the model with
INSTA-Th.

J Comparison with DyBNN
DyBNN [13] and INSTA-BNN have an apparent differ-

ence in that DyBNN relies solely on the channel-wise mean,
while we employ higher-order statistics as well. Fig. 1 of
the main paper shows the motivation for this: the higher-

(a) (b)

(c)
(a) Constant 

(zero) 
Threshold

(b) RSign

(c) INSTA-Th

Figure 4. t-SNE visualization of features extracted before the clas-
sifier (fully-connected layer) of each model. Half of the CIFAR-10
test set was used (500 images per class). Best viewed in color.

order statistics clearly describe the characteristics of the
pre-activation distribution. Based on this, INSTA-BNN de-
termines a more appropriate threshold for each instance.

Please note that basic INSTA-BNN outperforms DyBNN
(71.7% vs. 71.2%) without extra parameters of Fully-
Connected (FC) modules. Moreover, INSTA-BNN+

(72.2%) further improves accuracy by combining FC mod-
ules, illustrating the orthogonality of higher-order statis-
tics and FCs. Therefore, INSTA-BNN offers an ad-
ditional choice to balance between accuracy and opera-
tions/parameters, and this extension capability is superior
to DyBNN. Additionally, we provide hardware deployment
results and optimization methods, which are critical direc-
tions for the practical use of BNN works.

References
[1] Adrian Bulat, Brais Martinez, and Georgios Tzimiropoulos.

High-capacity expert binary networks. In International Con-
ference on Learning Representations (ICLR), 2021. 3

[2] Steven K Esser, Jeffrey L McKinstry, Deepika Bablani,
Rathinakumar Appuswamy, and Dharmendra S Modha.
Learned step size quantization. In International Conference
on Learning Representations, 2020. 1

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 1, 2

[4] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-
Yaniv, and Yoshua Bengio. Binarized neural networks. Ad-
vances in neural information processing systems, 29, 2016.
2



[5] Hyungjun Kim, Yulhwa Kim, and Jae-Joon Kim. In-memory
batch-normalization for resistive memory based binary neu-
ral network hardware. In Proceedings of the 24th Asia and
South Pacific Design Automation Conference, pages 645–
650, 2019. 1

[6] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 1

[7] Zechun Liu, Zhiqiang Shen, Marios Savvides, and Kwang-
Ting Cheng. Reactnet: Towards precise binary neural net-
work with generalized activation functions. In European
Conference on Computer Vision, pages 143–159. Springer,
2020. 1, 4

[8] Zechun Liu, Baoyuan Wu, Wenhan Luo, Xin Yang, Wei Liu,
and Kwang-Ting Cheng. Bi-real net: Enhancing the per-
formance of 1-bit cnns with improved representational ca-
pability and advanced training algorithm. In Proceedings of
the European conference on computer vision (ECCV), pages
722–737, 2018. 1, 3

[9] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101, 2017. 1

[10] Brais Martinez, Jing Yang, Adrian Bulat, and Georgios Tz-
imiropoulos. Training binary neural networks with real-to-
binary convolutions. In ICLR. 2020. 3

[11] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon,
and Ali Farhadi. Xnor-net: Imagenet classification using bi-
nary convolutional neural networks. In European conference
on computer vision, pages 525–542. Springer, 2016. 1

[12] Ziwei Wang, Jiwen Lu, Chenxin Tao, Jie Zhou, and Qi Tian.
Learning channel-wise interactions for binary convolutional
neural networks. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages
568–577, 2019. 4

[13] Jiehua Zhang, Zhuo Su, Yanghe Feng, Xin Lu, Matti
Pietikäinen, and Li Liu. Dynamic binary neural network
by learning channel-wise thresholds. In ICASSP 2022-2022
IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 1885–1889. IEEE, 2022.
4


