
Locomotion-Action-Manipulation:
Synthesizing Human-Scene Interactions in Complex 3D Environments

(Supplementary Material)

Jiye Lee
Seoul National University

kay2353@snu.ac.kr

Hanbyul Joo
Seoul National University

hbjoo@snu.ac.kr

1. Supplementary Video
The supplementary video shows the results of our

method, LAMA, on various scenarios. In the video, we
show our human motion synthesis results on PROX [9],
Matterport3D [4], and also our own 3D scene scanned by
Polycam App [1] with an iPad pro. We use SAPIEN [20]
object meshes to semi-automatically produce manipulation
cues, which is also shown in our videos. As shown, our
method successfully produces plausible and natural human
motions in many challenging scenarios.

While our original pipeline is designed for test-time op-
timization, in our video we also qualitatively demonstrate
the strength of our framework in generalized scenarios by
using a single optimized policy in handling different inputs
without further optimization. In the video, we also show a
policy optimized via our augmentation strategy (Sec. 3.5.)
can handle more extensive input variations.

Our supplementary video contains several ablation stud-
ies of our method by showing the importance of collision re-
ward rcoli in Eq. (4), transition reward (r∆t, r∆v) in Eq. (8),
posture offset aoffsett in Action Controller (Sec. 3.2), and
our motion editing modules (Sec. 3.5) compared to the tra-
ditional Inverse Kinematics (IK). We also show the compar-
ison with previous state-of-the arts [8, 18, 19] and demon-
strate that our results produce better quality motions with
improved collision avoidance performance in complex 3D
scenes.

2. More Details on Experiments
In this section, we describe further details on our experi-

ments on the Robustness Test of Action Controller (in Sec.
4.4) and the Perception Study (in Sec 4.2).

2.1. Robustness Test of Action Controller (Sec. 4.4)

In Sec. 4.4, Fig 10, and Table 2 of our main paper, we
demonstrate that a single policy optimized for a specific in-
put can handle varying target actions ϕA and initial ginit.

Name Foot Contact Penetration

Single Optimized Policy 4.16 1.35
Generalized Policy 4.47 1.41

Table 1: Physical plausibility measurement of the synthe-
sized motion from the robustness test. (Sec 4.4)

We describe more details on the experiment in Sec 4.4. For
the experimental setup, we consider all possible variations
for the input to test the generalization ability of the pol-
icy trained to a specific input. Specifically, a set of “all”
valid initials {ginit} is automatically chosen via grid sam-
pling of the floor plane for the locations p0

root, by excluding
points occupied by objects, with a random body orientation
for r0root. For the action target {ϕA}, we manually choose
multiple plausible locations (e.g., chairs) for the actions. In
the test scene W0 we use in Fig. 10, there exist 2635 plau-
sible initial positions and we consider 4 target action cues
shown in the white boxes in Fig. 10.

The original policy πo (Fig. 10 top) is optimized to a spe-
cific input ginit and action cue ϕ1

A, marked as red in the top
left of Fig. 10. The colored points in Fig. 10 show the lo-
cations where the policy πo achieves the goal successfully
without any further optimization for the policy. For each
input pair ginit and ϕn

A, we perform the motion synthesis
with the policy πo 5 times. In each trial, the initial body ori-
entation is chosen randomly to provide more variations. We
determine the policy is successful for the current initial lo-
cation when no early termination conditions (collision, stall,
moving out of the scene) are met while fulfilling ϕn

A at least
twice out of the 5 trials. As shown in Fig. 10 and Table 2,
our action controller optimized for a specific target can be
applicable to many input variations.

We perform the same test for the generalized policy (de-
scribed in Sec. 3.5) in the bottom of Fig. 10 and Tab. 2.
As shown, this policy can cover much more extensive input
variations on the same scene.

Comparison of Computation Time. As a test-time op-
timization without requiring scene-paired motion datasets,
our original framework takes time to train a policy from a
scratch for a given input pair. However, reusing the same
policy that is optimized for the specific input for other in-
puts can greatly reduce the computation time, because no
further optimization is needed for the policy. To compare
the time between performing the inference only and op-
timizing a policy from scratch, we test with 5 input pairs
consisting of initial ginit and ϕA. Here, the term “inference
only” indicates that we use a pre-optimized policy without
any further optimization for varying inputs. As the result,
the inference-only scenario takes 0.15 seconds on average
per input pair for motion synthesis, while optimizing a pol-
icy from scratch per pair takes 6.32 minutes (379 seconds)
on average. As shown, the capability of the reinforcement
learning framework provides the potential to greatly im-
prove the efficiency of our method.

Motion Quality Measurement. We also evaluate the
physical plausibility of the synthesized motion in the ro-
bustness test in Sec. 4.4. An optimized policy synthesized
15 motion sequences with distinct input pairs (the input pair
which the policy is initially optimized to is not included).
We also perform the measurement to motions synthesized
by the generalized policy optimized with an augmentation
strategy. The results are shown in Table 1. This shows while
a policy can handle variations in input, there is no perfor-
mance drop in the synthesized motion quality.

2.2. Perception Study Setup

The videos used for perception study are in the supple-
mentary video. We include 3 videos per set to the supple-
mentary video.

3. More Details on Implementations
3.1. Action Controller

Implementation Details. The policy and the value net-
work of the action controller module consists of 4 and 2
fully connected layers of 256 nodes, respectively. The con-
trol policy is optimized through Proximal Policy Optimiza-
tion (PPO) algorithm [17]. Adam optimizer [10] is used
with Nvidia RTX 3090 GPU. For the action controller A
and motion synthesizer module S, we use the animation li-
brary DART [11]. We also use a publicly available PPO im-
plementation [14, 12], where we remove the variable time-
stepping functions stepping in [12] by following the origi-
nal PPO algorithm. The details of the optimization regard-
ing the policy and value network of the action controller are
written in Table 2.

Acceleration Techniques. As written in the main paper,
we use early termination conditions to accelerate policy op-

Name Value

Learning rate of policy network 2e-4
Learning rate of value network 0.001
Discount factor (γ) 0.95
GAE and TD (λ) 0.95
Clip parameter (ϵ) 0.2
of tuples per policy update 30000
Batch size for policy/value update 512

Table 2: Details on the hyper-parameters for learning the
control policy of the Action Controller A.

timization. The episode is terminated when (1) the char-
acter moves out of the scene bounding box; (2) when the
collision reward rcoli is under a certain threshold; and (3)
the root velocity for a specific time duration (50 frames) is
under a certain threshold to prevent the character standing
still for a overly long time. Also, the action controller first
checks in advance whether the action signal is valid when it
makes transitions from locomotion to other actions. When
the nearest feature distance of Eq. 2 in the motion synthe-
sizer (Sec. 3.3) is over a certain threshold, the action con-
troller discards the transition and continues navigating.

3.2. Motion Synthesizer

Motion Database Information. Motion is captured by
an IMU based system XSens MVN Link [3] and is post-
processed via XSens MotionCloud software [2]. The cap-
tured motion is then retargeted to a single unified skeleton
using Autodesk MotionBuilder and is post-processed to be
suitable for motion matching. For action motions we mir-
ror the motion segments for data augmentation. The length
(in frames) of motion segments (“Seg. Length” in tables),
number of motion segment (“Seg. Count” in tables), and
the number of total frames (“Total Frames” in tables) are
summarized in Table 3.

Action-Specific Feature Definition. The motion feature,
as defined in our main paper Sec 3.3, represents both the
current state of the motion and a short term future move-
ments: f(m) = {{pj}, {ṗj}, θup, c,ofuture}. In particu-
lar the action specific feature ofuture = {{p∆t

0 }, {r∆t
0 }}

contains future motions so that the motion search process
can take into account the future motion consistency, where
p∆t
0 , r∆t

0 ∈ R2 are the position and orientation of root joint
at ∆t frames later from the current target frame. For loco-
motion, we extract ∆t = 10, 20, and 30 frames in the future
(at 30Hz) following [5], as addressed in our main paper. For
sitting, we specifically choose ∆t as the frame where the
character completes the sit-down motion. The major moti-
vation of this design choice is encourage the motion syn-
thesizer to search the motion clips with the desired target

action.

3.3. Motion Editing via Motion Manifold

Implementation Details for Models and Training. The
encoder and decoder of the task-adaptive motion editing
module consist of three convolutional layers. For the con-
volutional autoencoder of task-adaptive motion editing, we
use PyTorch [15], FairMotion [6], and PyTorch3d [16]. The
autoencoder is trained with the Adam optimizer [10] with
learning rate 0.0001. We use Nvidia RTX 3090 GPU. We
use 3 layers of 1D temporal-convolutions with kernel width
of 25 and stride 2, and the channel dimension of each out-
put feature is 256. For training the autoencoder module in
task-adaptive motion editing we use data in Mixamo [13],
Lafan1 [7], COUCH [21], and ours. The training datasets
are summarized in Table 4. Note that data used for training
the autoencoder also does not include scene related infor-
mation (in bvh format), and we use different pre-processing
steps between the Motion Editing module and the Motion
Synthesizer.

Reconstruction Loss. The encoder Ψ and decoder Ψ−1

are trained based on reconstruction loss Lrecon = ||X −
Ψ−1(Ψ (X)) ||2, where:

Lrecon = wcLcontact + wrLroot + wqLquat + wpLpos. (1)

Lcontact, Lroot, and Lquat are the MSE losses of foot con-
tact labels, root status (height and transform relative to the
previous frame projected on the XZ plane), and the joint
rotations in 6D representations [22]. To penalize errors ac-
cumulating along the kinematic chain, we perform forward
kinematics (FK) and measure the global position distance
of joints between the original and reconstructed motion. As
global positions of the joints are highly dependent on the
root positions, for the early epochs, the distance is mea-
sured based on root-centric coordinates to ignore the global
location of roots, which we found empirically more stable.
Also, during training we used an augmentation technique of
adding noise to normalized input. Noise is sampled from the
normal distribution N (0, 1) multiplied with a scale of 0.01.
We found the technique empirically increases reconstructed
motion quality.

Motion Editing Loss. For motion editing, the positional
loss and regularization loss are defined as follows.

L = wpLpos + wfLfoot + wrLroot, where

Lpos =
∑

qt
j∈ϕM

∥pt
j − qt

j∥2,

Lfoot =
∑
foot

∥pe
foot − pi

foot∥2,

Lroot = wr∥rexz − rixz∥2 + w∆r∥ṙexz − ṙixz∥2.

(2)

pj denotes positions of joint j, and r, ṙ denotes root po-
sitions and velocities respectively. Superscript e and i in-
dicates whether it is from edited or initial motion, respec-
tively. Subscript xz indicates the vector is projected onto
the XZ plane. The loss term L enforces the edited motion
to maintain contact and root trajectory (in the XZ plane)
of the initial motion, while generating natural movements
of the other joints to meet the sparse positional constraints.
For minimizing losses, Adam optimizer [10] is used as well
with a learning rate of 0.005.

Generating Manipulation Cues from SAPIEN [20].
While the manipulation cue ϕM = [v(Rt, Tt, θt)]t can be
provided via diverse ways depending on the applications,
we mainly consider the scenarios of interacting with ar-
ticulated objects. For this purpose, we semi-automatically
produce the manipulation cues by extracting the desired
target vertex trajectories of the parts of articulated objects
from the SAPIEN dataset [20]. Specifically, we place a tar-
get object in our 3D scene, and choose a target vertex v
of the object where we assume the character’s hand con-
tacts to manipulate the target part (e.g., a vertex in the lid
of a trash can object). Then, the trajectory of the vertex
ϕM = [v(Rt, Tt, θt)]t can be obtained by varying the pa-
rameter for the articulated motion θ with a fixed interval,
where Rt, Tt, are the global orientation and translation of
the object and θt is the parameters for the object articula-
tion (e.g., the hinge angle of the cover of a laptop) at time
t. v(·) represents the 3D location of the chosen vertex v
given the parameters. The resulting manipulation cue ϕM is
the target trajectory that a hand joint should follow for the
manipulation motion. Note that our system requires only
the manipulation cue ϕM , and the 3D object mesh is shown
only for visualization purposes, where we visualize it with
the synced θt.

Further Implementation Details for Manipulation
Given the initial motion output M synthesized from the Ac-
tion Controller, M = {mt}Tt=1 and the manipulation cue
ϕM = {mt′}τt′=1, our system is also given the correspond-
ing time segment [ti, tf] where we want to edit the motion
to follow the manipulation cue (we assume the same dura-
tion, i.e., tf − ti = τ). Then motion editing is performed
on the target motion segment, M̃ti:tf = E(Mti:tf), which
subsequently replaces the corresponding part in M to form
M̃ as the final output.

Depending on possible applications (e.g, sitting down
and opening a laptop), the manipulation motion may need to
be “added” in the middle or the end of the synthesized mo-
tion M. In this case, we simply duplicate the target frame
by τ to build a longer motion M = {mt}T+τ

t=1 , and apply
the motion editing to the target motion segment that is a
stationary motion produced via the duplication.

Label Seg. Length Seg. Count Total Frames

Locomotion 10 23832 24267
Sit 50 – 85 6230 15130

Table 3: Details on pre-processed motion datasets per each
action category of the motion database in S.

Name Value

Motion sequence length 120
Number of sequence (training) 45713
Number of sequence (test) 11040
Number of sequence (validation) 5268

Table 4: Details on pre-processed motion datasets for train-
ing our motion editing module M.

References
[1] Polycam - lidar and 3d scanner for iphone android. https:

//poly.cam/. 1
[2] Xsens motioncloud. https://www.

movella.com/products/motion-capture/
xsens-motioncloud. 2

[3] Xsens mvn link. https://www.movella.com/
products/motion-capture/xsens-mvn-link. 2

[4] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Hal-
ber, Matthias Niessner, Manolis Savva, Shuran Song, Andy
Zeng, and Yinda Zhang. Matterport3d: Learning from rgb-d
data in indoor environments. In 3DV, 2017. 1

[5] Simon Clavet. Motion matching and the road to next-gen
animation. In Proc. of GDC, 2016. 2

[6] Deepak Gopinath and Jungdam Won. fairmotion - tools to
load, process and visualize motion capture data. Github,
2020. 3

[7] Félix G Harvey, Mike Yurick, Derek Nowrouzezahrai, and
Christopher Pal. Robust motion in-betweening. ACM Trans.
Graph, 39(4), 2020. 3

[8] Mohamed Hassan, Duygu Ceylan, Ruben Villegas, Jun Saito,
Jimei Yang, Yi Zhou, and Michael Black. Stochastic scene-
aware motion prediction. In ICCV, 2021. 1

[9] Mohamed Hassan, Vasileios Choutas, Dimitrios Tzionas,
and Michael J. Black. Resolving 3D human pose ambigu-
ities with 3D scene constraints. In ICCV, 2019. 1

[10] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 2, 3

[11] Jeongseok Lee, Michael X Grey, Sehoon Ha, Tobias Kunz,
Sumit Jain, Yuting Ye, Siddhartha S Srinivasa, Mike Stilman,
and C Karen Liu. Dart: Dynamic animation and robotics
toolkit. The Journal of Open Source Software, 3(22), 2018.
2

[12] Seyoung Lee, Sunmin Lee, Yongwoo Lee, and Jehee Lee.
Learning a family of motor skills from a single motion clip.
ACM Trans. Graph., 40(4), 2021. 2

[13] Adobe’s Mixamo. https://www.mixamo.com, 2017. 3
[14] Soohwan Park, Hoseok Ryu, Seyoung Lee, Sunmin Lee, and

Jehee Lee. Learning predict-and-simulate policies from un-
organized human motion data. ACM Trans. Graph., 38(6),
2019. 2

[15] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An
imperative style, high-performance deep learning library.
In Advances in Neural Information Processing Systems 32.
2019. 3

[16] Nikhila Ravi, Jeremy Reizenstein, David Novotny, Tay-
lor Gordon, Wan-Yen Lo, Justin Johnson, and Georgia
Gkioxari. Accelerating 3d deep learning with pytorch3d.
arXiv:2007.08501, 2020. 3

[17] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Rad-
ford, and Oleg Klimov. Proximal policy optimization algo-
rithms. arXiv preprint arXiv:1707.06347, 2017. 2

[18] Jingbo Wang, Yu Rong, Jingyuan Liu, Sijie Yan, Dahua Lin,
and Bo Dai. Towards diverse and natural scene-aware 3d
human motion synthesis. In CVPR, 2022. 1

[19] Jiashun Wang, Huazhe Xu, Jingwei Xu, Sifei Liu, and Xiao-
long Wang. Synthesizing long-term 3d human motion and
interaction in 3d scenes. In CVPR, 2021. 1

[20] Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao
Zhu, Fangchen Liu, Minghua Liu, Hanxiao Jiang, Yifu Yuan,
He Wang, et al. Sapien: A simulated part-based interactive
environment. In CVPR, 2020. 1, 3

[21] Xiaohan Zhang, Bharat Lal Bhatnagar, Sebastian Starke,
Vladimir Guzov, and Gerard Pons-Moll. Couch: Towards
controllable human-chair interactions. In ECCV, 2022. 3

[22] Yi Zhou, Connelly Barnes, Lu Jingwan, Yang Jimei, and Li
Hao. On the continuity of rotation representations in neural
networks. In CVPR, 2019. 3

https://poly.cam/
https://poly.cam/
https://www.movella.com/products/motion-capture/xsens-motioncloud
https://www.movella.com/products/motion-capture/xsens-motioncloud
https://www.movella.com/products/motion-capture/xsens-motioncloud
https://www.movella.com/products/motion-capture/xsens-mvn-link
https://www.movella.com/products/motion-capture/xsens-mvn-link
https://www.mixamo.com

