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S1. Algorithms of Pseudo-Labeling based Flex-
ible Memory Sampling (PL-FMS)

In this section, we offer a detailed explanation of the
Pseudo-Labeling based Flexible Memory Sampling. The
details for pseudo-labeling based memory management and
flexible memory sampling can be found in Alg. 1 and Alg.
2 respectively. It is important to note that both algorithms
are executed for every iteration, ensuring that the sampling
process is constantly optimized. In Alg 2, when ρt(y) is not
equal to 1, then the sample from the stream data samples
St is rejected and a sample is randomly selected from the
set difference of the memory and the already selected mem-
ory samples. Overall, our Pseudo-Labeling based Flexible
Memory Sampling approach is designed to improve the ef-
ficiency and effectiveness of the sampling process.

S2. Details on Dataset Configuration

S2.1. Single-Depth Datasets

ImageNet-Hier100 ImageNet-Hier100 is a subset of the
ImageNet dataset [2] that is organized based on the taxon-
omy of WordNet [5]. The dataset is structured to represent
100 fine-grained classes by grouping them into 10 coarse-
grained classes that capture the overall semantic structure.
Each coarse-grained class consists of 10 corresponding fine-
grained classes, which are subcategories that belong to the
larger, upper-level group of the coarse-grained class. These
10 coarse-grained classes are referred to as superclasses
and include carnivore, bird, arthropod, fruit, fish, ungulate,
vehicle, clothing, furniture, and structure. The fine-grained
classes, referred as subclasses, that correspond to each su-
perclass are depicted in Figure S1.

S2.2. Multiple-Depth Datasets

CIFAR100 The CIFAR100 dataset is a widely used
benchmark for image classification tasks, consisting of
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Algorithm 1 Pseudo-Labeling based Memory Management
Input levels of hierarchy H , feature extractor F , classi-
fiers {Gk}Hk=1, softmax function σ, memory M, mem-
ory size m, label sets for hierarchy levels {Yk}Hk=1, new
sample (xnew, ynew), hierarchy level of the new sample
h, per-sample importance measures for samplesH
if |M| < m then
M←M∪ {(xnew, ynew)}

else
ȳ = argmaxy |{(xn, yn) ∈M|yn = y}|
Mȳ = {(xn, yn) ∈M|yn = ȳ}
Iȳ = {j|(xj , yj) ∈Mȳ}
for k = 1, 2, · · · , H do

if k ̸= h then
s = (0, 0, · · · , 0) ∈ R|Yk|

for (x, y) ∈Mȳ do
î = argmaxi σ(Gk(F(x)))i
sî ← sî + 1

end for
ŷk = argmaxi∈Yk si
Iȳ ← Iȳ ∪ {j|(xj , yj) ∈M, yj = ŷk}

end if
end for
ĵ = argminj∈Iȳ

Hj

M← (M\{(xĵ , yĵ)}) ∪ {(xnew, ynew)}
end if
OutputM

60,000 32x32 color images organized into 100 fine-grained
classes, with 600 images per class. The dataset is split into
50,000 training images and 10,000 testing images, making
it ideal for evaluating different machine learning models.
The images depict real-world objects such as animals, vehi-
cles, and household items and are used for various computer
vision tasks, including object recognition and image classi-
fication.

For the CIFAR100 dataset, we follow the hierarchical
taxonomy as described in [3]. The dataset has five lev-



Figure S1: An overview of the ImageNet-Hier100 dataset, which is represented as a hierarchical structure. The dataset in-
cludes 10 broad categories or ”superclasses”, which are further divided into 10 more specific categories or ”subclasses”. The
subcategories are visually depicted as branches stemming from the main categories, resulting in a total of 100 subclasses in
the dataset.

Algorithm 2 Flexible Memory Sampling
Input memoryM, training iteration t, iterations encoun-
tering class y at the first time Ty , normalizing factor T ,
stream data samples St, memory data samples Nt

Bt = Nt

for (x, y) ∈ St do
ρt(y) ∼ Bern

(
min

(
t−Ty

T , 1
))

if ρt(y) is not 1 then
(x′, y′) ∼ UM\Bt

\\ UA : uniform random sampler over a set A
Bt ← Bt ∪ {(x′, y′)}

else
Bt ← Bt ∪ {(x, y)}

end if
end for
Output Bt

els of hierarchy with (2,4,8,20,100) classes, excluding the
root node. The dataset has an Imbalance Ratio (IR) of 1,
indicating a balanced distribution of classes. It has a total
of 134 nodes and 100 leaves, denoting the total number of
nodes and leaf nodes in the tree-shaped hierarchy, respec-
tively. The Average Branching Factor (ABF) of the dataset
is 3.8, representing the average number of children (sub-
classes) for each superclass. The average pairwise distance
is 7.0, reflecting the average distance between each pair of
classes in the hierarchy.

iNaturalist-19 The iNaturalist dataset is a large-scale
image classification dataset of organisms, containing over
800,000 images from more than 8,000 different species.

The iNaturalist-19 dataset, a subset of the larger iNaturalist
dataset, was introduced for the 2019 CVPR Fine-Grained
Visual Categorization Workshop. It includes metadata with
hierarchical relationships between species, making it use-
ful for evaluating methods for fine-grained visual catego-
rization. The iNaturalist-19 dataset comprises 265,213 color
images, organized into 1010 fine-grained classes.

However, the test set labels for the iNaturalist-19 dataset
are not publicly available. To address this issue, we ran-
domly selected and resampled three splits from the original
training and validation data to create a new training, valida-
tion, and test set, as suggested in [1]. These sets were cre-
ated using probabilities of 0.7, 0.15, and 0.15, respectively.

The iNaturalist-19 dataset has a hierarchical taxonomy
with seven levels and (3, 4, 9, 34, 57, 72, 1010) classes, ex-
cluding the root node. It also has an Imbalance Ratio (IR)
of 31, indicating a significant imbalance in the distribution
of classes. The dataset has a total of 1,189 nodes and 1,010
leaves, denoting the total number of nodes and leaf nodes
in the hierarchy, respectively. Its Average Branching Factor
(ABF) is 6.6, representing the average number of children
(subclasses) for each superclass. The average pairwise dis-
tance is 11, reflecting the average distance between each
pair of classes in the hierarchy.

S3. Details on Implementation of Baseline
Methods on HLE setup

ER and EWC++. ER and EWC++ uses reservoir sam-
pling strategy for memory management by randomly re-
moving samples in the memory to replace samples. We im-
plemented the reservoir sampling in the hierarchical label



Figure S2: Any-time inference results on ImageNet-
Hier100 for single-label scenario with single-depth hierar-
chy. H=1 is parent classes and H=2 child classes. Task index
1 receives parent class labeled data and subsequent indexes
receive child class labeled data. Each data point shows av-
erage accuracy over three runs (± std. deviation).

expansion (HLE) setup so that it not only ignores the class
information but also the hierarchical information when it
randomly selects samples to remove from the memory.
BiC. BiC was originally proposed on the offline CL setup
with herding selection [6]. However, herding selection is not
applicable since entire task data is required for computing
class mean, which is impossible on online CL setup. There-
fore, we applied the reservoir sampling for BiC as used in
[4]. BiC empirically demonstrates that the classifier is bi-
ased towards new classes and proposes a bias correction
layer attached at the end of the classifier, which is trained
with the separate validation set as a small part of the mem-
ory, to correct the classifier. Since there are multiple clas-
sifiers for each hierarchy in the HLE setup, we also used
multiple bias correction layers for each corresponding clas-
sifier. In contrast, the validation set stores the samples for
all encountered classes regardless of their hierarchy.
MIR. MIR enhances memory utilization by first drawing a
subset of the memory whose cardinality is larger than that of
the training batch, and then selecting samples from the sub-
set that would experience the highest loss increase if trained
with streamed data to update the model. To apply MIR in the
HLE setup, we extracted samples independently for each
hierarchy level and ensured that the ratio of the number of
samples in the subset and the training batch matched for
each level.
RM, GDumb, and CLIB RM, GDumb, and CLIB are orig-
inally managed to maintain the balance of the number of
samples for each class in memory. Following their memory
management schemes, we balance it regardless of hierarchy
level in the HLE setup.

S4. Details on Evaluation Metrics
Any-time inference While average accuracy (Aavg) is

a widely used measure in continual learning evaluation,
it only provides a limited evaluation of a model’s perfor-
mance. Aavg measures performance only at task transitions,
which typically occur only a few times during the learn-

Figure S3: Any-time inference results on CIFAR100,
ImageNet-Hier100, and Stanford Cars dataset for dual-label
scenario with single-depth hierarchy. H=1 is parent classes
and H=2 child classes. Task index 1 receives parent class
labeled data and subsequent indexes receive child class la-
beled data. Each data point shows average accuracy over
three runs (± std. deviation).

ing process. Therefore, it may not provide a comprehensive
evaluation of a model’s ability to adapt to new tasks without
forgetting previously learned ones.

In contrast to average accuracy, any-time inference is
a more appropriate and useful metric for evaluating con-
tinual learning models. Any-time inference measures a
model’s ability to make accurate predictions at any point
during the learning process, without relying on explicit task
boundaries. To measure any-time inference, we evaluate the
model’s accuracy after observing every ∆n samples, in-
stead of only at discrete task transitions by referring to [4].
This approach provides a more continuous and fine-grained
evaluation of a model’s performance, reflecting real-world
scenarios where new tasks and data can arrive at any time,
and the model needs to adapt quickly without sacrificing
performance on previously learned tasks. Therefore, any-
time inference is a more suitable metric for evaluating con-
tinual learning models, as it aligns with the practical re-
quirements of real-world applications where machine learn-
ing models must continuously learn and adapt to new data
over time.



Figure S4: Any-time inference results on iNaturalist-19 dataset for multiple-depth hierarchy. H=1 represents the coarsest
level and H=7 represents the finest level of class hierarchy. The dotted line represents the point at which the model is fully
given the task data for the corresponding task index. The reported data points represent the average accuracy over three runs
(± std. deviation)

Figure S5: Any-time inference results on CIFAR100 dataset for multiple-depth hierarchy. H=1 represents the coarsest level
and H=5 represents the finest level of class hierarchy. The dotted line represents the point at which the model is fully given
the task data for the corresponding task index. The reported data points represent the average accuracy over three runs (± std.
deviation)

S5. Anytime Inference on ImageNet-Hier100
for Single-Label Scenario

In Figure S2, we report the any-time inference result
for ImageNet-Hier100 dataset for single-label scenario with
single-depth hierarchy. The trend is similar to the result
on CIFAR100 dataset for the single-label scenario in the
main paper. It’s worth noting that the performance of CLIB
was relatively inferior to the methods that employ reservoir
sampling, such as ER, EWC++, BiC, and MIR. This could
be due to the fact that ImageNet-Hier100 has a longer in-
terval of iterations for each task compared to CIFAR100,
and CLIB’s memory-only training is limited in its ability to
adapt to newly encountered classes.

S6. Anytime Inference on iNaturalist-19 for
Multi-Depth Scenario

Figure S4 shows the any-time inference results for multi-
depth scenario on iNaturalist-19 dataset. As we observed
from the any-time inference results for CIFAR100, the per-
formance of the baseline methods except CLIB for the hi-
erarchy levels from 1 to 6 deteriorate seriously at the end
of task 6, where the number of class increases explosively
from 179 to 1189 by label expansion to the most fine-
grained classes. On the other hand, the performance of PL-
FMS and CLIB demonstrates their mild forgetting at the end
of the task 6 while the any-time inference results of CLIB
for the hierarchy levels larger than 4 shows relatively lower
performance compared to PL-FMS and RM. Until the end
of task 6, EWC++ shows the highest performance for hi-
erarchy level 1,2, and 3, but it exhibit severe catastrophic
forgetting after the task 6. In overall, PL-FMS shows the



best performance for all hierarchy levels except the hierar-
chy level 1 at the end of the training and consistently high
performance in terms of any-time inference for all hierar-
chy levels. We chose not to conduct the GDumb method for
the multiple-depth scenario due to its consistently low per-
formance on both single-depth and multiple-depth datasets,
and because it required a significant amount of training
time. However, we did perform an additional experiment
for the MIR baseline method to clarify the performance of
all baseline methods except for GDumb. The MIR method
demonstrated comparable performance against other base-
line methods, which was the motivation for conducting this
experiment.

S7. Anytime Inference for Dual-Label Sce-
nario

In Figure S3, we report the any-time inference results
for dual-label scenario with single-depth hierarchy on CI-
FAR100, ImageNet-Hier100, and Stanford Cars dataset.
Since the model is trained with more samples and the labels
from both hierarchy level 1 and 2 are assigned to same sam-
ples, the dual-label scenario showed higher performance
compared to the results for the single-label scenario, except
some baseline methods. Note that the performance for hier-
archy level 1 in dual-label scenario can be more easily sat-
urated in the first task due to the larger number of samples
for each task. Because of this, PL-FMS showed the forget-
ting on CIFAR100 dataset in hierarchy level 1 through the
subsequent tasks, while we didn’t observe it in the single-
label scenario. Furthermore, PL-FMS showed significantly
higher performance on Stanford Cars dataset in hierarchy
level 2 whereas baseline methods didn’t show such dramatic
improvement.

S8. Anytime Inference of MIR and GDumb on
Mutli-Depth Scenarios

Figure S5 is the results of the any-time inference of
MIR and GDumb for multi-depth scenario on CIFAR100
dataset. We can find that MIR shows similar performance to
ER and EWC++. Also, GDumb exhibits similar trend that
we found from the single-depth scenario, where the perfor-
mance is maintained during the task since it is trained from
the scratch whenever the model is tested. Because of that,
as can be seen from the result of RM at the end of the last
task, GDumb shows relatively higher performance for the
highest hierarchy level compared to other baselines. This is
due to the fact that both RM and GDumb train the model
with samples in memory for multiple epochs, which is not
realistic for task-free online continual learning.
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