Read-only Prompt Optimization for Vision-Language Few-shot Learning (Supplementary Materials)

Here, we provide additional experiments and analyses which are not included in the main paper due to the limited space, which include ablation results of individual datasets and analysis about robustness of RPO on diverse benchmark datasets.

A. Ablation results on individual datasets

In Section 4.3 of our main paper, we only provided averaged results due to limited space. Therefore, here we provide analysis results for each of the 11 image recognition datasets.

A.1. Ablation on our components

Ablation on read-only mask As shown in Table 1, removing the read-only mask results in a drop of generalization performance on 10 out of 11 datasets based on the harmonic mean of base and novel accuracy. Additionally, novel accuracy deteriorates on all datasets without masked attention, which supports our claim that the read-only mechanism aids generalization.

Ablation on initialization Omitting the proposed initialization results in the improvement of 'base' accuracy and the loss of 'novel' accuracy on 7 out of 11 datasets. It shows worse generalization performance (evaluated by harmonic mean) on 9 out of 11 datasets. We believe that initializing prompts with pre-trained special tokens enables converging to a hypothesis with better generalizability.

A.2. Ablation on multi-modality of prompt

To show that the performance boost of RPO is not due to the multi-modality of prompts but the read-only mechanism, we provide the base-to-new generalization performance of RPO with only learnable text prompts (text-RPO). For text-RPO, we exploit global image feature of pre-trained ViT-B/16 backbone as image feature.

RPO with only learnable text prompts As shown in Table 2, text-RPO results in a marginal performance drop (0.8%) compared to RPO on average. To be specific, text-RPO even outperforms RPO on FGVCAircraft datasets by a small margin. Additionally, text-RPO outperforms CoCoOp on 8 out of 11 datasets, which supports the effectiveness of read-only mechanism compared to conventional prompt tuning.

Table 1: Ablation on our components in base to new generalization setting. We evaluate base to new generalization performance by ablating read-only mask and special initialization.

(a) Average over 11 datasets				(b) ImageNet.				(c) Caltech101.				
Methods	Base	Novel	H	Methods	Base	Novel	Н	Methods	Base	Novel	H	
w.o mask	79.97	69.90	74.02	w.o mask	76.10	69.03	72.40	w.o mask	98.10	92.87	95.41	
w.o init	82.27	72.78	76.78	w.o init	76.57	70.57	73.45	w.o init	98.60	92.47	95.43	
RPO	81.13	75.00	77.78	RPO	76.60	71.57	74.00	RPO	97.97	94.37	96.03	
(d) OxfordPets.				(e) StanfordCars.				(f) Flowers102.				
Methods	Base	Novel	H	Methods	Base	Novel	Н	Methods	Base	Novel	H	
w.o mask	95.13	96.77	95.95	w.o mask	74.53	71.47	72.96	w.o mask	96.87	71.47	82.92	
w.o init	95.57	96.90	96.23	w.o init	72.93	73.33	73.13	w.o init	94.70	74.83	83.60	
RPO	94.63	97.50	96.05	RPO	73.87	75.53	74.69	RPO	94.13	76.67	84.50	
(g) Food101.				(h) FGVCAircraft.				(i) SUN397.				
Methods	Base	Novel	H	Methods	Base	Novel	H	Methods	Base	Novel	H	
w.o mask	88.97	88.73	88.85	w.o mask	35.53	29.90	32.45	w.o mask	78.96	76.10	77.50	
w.o init	90.23	89.87	90.05	w.o init	38.37	31.43	34.55	w.o init	80.53	77.60	79.04	
RPO	90.33	90.83	90.58	RPO	37.33	34.20	35.70	RPO	80.60	77.80	79.18	
	(j) DTI	D.		(k) EuroSAT.				(l) UCF101.				
Methods	Base	Novel	H	Methods	Base	Novel	Н	Methods	Base	Novel	Н	
w.o mask	78.67	55.77	65.25	w.o mask	74.70	45.13	54.57	w.o mask	82.07	70.63	75.92	
w.o init	79.93	63.13	70.53	w.o init	93.80	55.13	69.37	w.o init	83.77	75.27	79.29	
RPO	76.70	62.13	68.61	RPO	86.63	68.97	76.79	RPO	83.67	75.43	79.34	
		-	·									

(a) Ave	rage over	11 datase	ts		(b) Image	Net.		(c) Caltech101.				
Methods	Base	Novel	H	Methods	Base	Novel	Н	Methods	Base	Novel	H	
CoCoOp	80.47	71.69	75.83	CoCoOp	75.98	70.43	73.10	CoCoOp	97.96	93.81	95.84	
text-RPO RPO	79.54 81.13	74.83 75.00	77.01 77.78	text-RPO RPO	76.13 76.60	70.70 71.57	73.31 74.00	text-RPO RPO	97.76 97.97	93.96 94.37	95.82 96.03	
(d) Oxford	Pets.		(6	e) Stanfor	dCars.		(f) Flowers102.				
Methods	Base	Novel	H	Methods	Base	Novel	Н	Methods	Base	Novel	Н	
CoCoOp	95.20	97.69	96.43	CoCoOp	70.49	73.59	72.01	CoCoOp	94.87	71.75	81.71	
text-RPO RPO	94.56 94.63	97.16 97.50	95.84 96.05	text-RPO RPO	72.16 73.87	74.4 75.53	73.26 74.69	text-RPO RPO	91.70 94.13	74.90 76.67	82.45 84.50	
(g) Food101.				(h) FGVCAircraft.				(i) SUN397.				
Methods	Base	Novel	H	Methods	Base	Novel	Н	Methods	Base	Novel	H	
CoCoOp	90.70	91.29	90.99	CoCoOp	33.41	23.71	27.74	CoCoOp	79.74	76.86	78.27	
text-RPO RPO	89.90 90.33	90.06 90.83	89.98 90.58	text-RPO RPO	36.5 37.33	35.7 34.20	36.09 35.70	text-RPO RPO	79.56 80.60	77.03 77.80	78.27 79.18	
(j) DTD.				(k) EuroSAT.				(l) UCF101.				
Methods	Base	Novel	H	Methods	Base	Novel	Н	Methods	Base	Novel	Н	
CoCoOp	77.01	56.00	64.85	CoCoOp	87.49	60.04	71.21	CoCoOp	82.33	73.45	77.64	
text-RPO RPO	75.06 76.70	62.60 62.13	68.26 68.61	text-RPO RPO	79.90 86.63	71.60 68.97	75.52 76.79	text-RPO RPO	81.70 83.67	75.1 75.43	78.26 79.34	

Table 2: Comparison of CoCoOp, vis-RPO, text-RPO and RPO in the Base to new generalization setting. We evaluate base to new generalization performance with unimodal RPO trained with 16-shot sampled training data.