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A. Detailed Experimental Settings
A.1. Subcategories of super-categories

Table S1 lists the subcategories that belong to the eight super-categories we construct. COCO-Stuff dataset [1]
defines a set of categories as the super-category, and we cluster them into the newly eight super-categories.

COCO-Stuff [1]

Our super-category super-category Category
« | Animal Animal bird, cat, dog, horse, sheep, cow, elephant, bear, zebra, giraffe
% Vehicle Vehicle bicycle, car, motorcycle, airplane, bus, train, truck, boat
O | Person Person person
-§ Sports Sports frisbee, skis, snowboard, sports ball, kite, baseball bat, baseball glove, skateboard, surfboard, tennis racket
gﬁ Plant flower, tree-merged, grass-merged
g Plant Food banana, apple, sandwich, orange, broccoli, hot dog, pizza, donut, cake
. Food-stuff fruit, food-other-merged
Ground sand, snow, dirt-merged, gravel, road, pavement-merged, railroad, platform, playingfield
Plain Solid mountain-merged, rock-merged
Water river, sea, water-other
ki Sky sky-other-merged
§ Building bridge, house, roof, tent, building-other-merged
%D Wall wall-tile, wall-wood, wall-brick, wall-stone, wall-other-merged
;:g Patterned Window window-blind, window-other
Structural fence-merged, net
Floor floor-wood, floor-other-merged
Ceiling ceiling-merged
Furniture chair, couch, potted plant, bed, dining table, toilet
Furniture-stuff counter, door-stuff, light, mirror-stuff, shelf, stairs, cabinet-merged, table-merged
Textile rug-merged, towel, curtain, blanket, pillow, banner
Accessory backpack, umbrella, handbag, tie, suitcase
5. Etc. Kitchen bottle, wine glass, cup, fork, knife, spoon, bowl
Appliance microwave, oven, toaster, sink, refrigerator
Electronic tv, laptop, mouse, remote, keyboard, cell phone
Indoor book, clock, vase, scissors, teddy bear, hair drier, toothbrush
Outdoor traffic light, fire hydrant, stop sign, parking meter, bench
Raw-material cardboard, paper-merged

Table S1. Detailed category lists for each super-category used for our experiments.



In ablation study, the 4-expert super-categorization comprises: ’Animal/Person/Vehicle,” "Plant/Plain Back-
ground,’ 'Patterned Background,” and ’Sports/Etc.” Also, the 6-expert super-categorization includes: ’Animal,’
"Person,’ "Vehicle,” "Plant /Plain Background,’” "Patterned Background,” and ’Sports/Etc.’

A.2. Acquiring segmentation maps for foreground object removal

We use a simple k-nearest neighbors (KNN) algorithm (KNeighborsClassifier function in scikit-learn [5]) for
generating segmentation maps corresponding to the foreground object. The algorithm takes 30(=K) consecutive
segmentation maps as inputs with holes on the masked foreground objects, and outputs a segmentation map
corresponding to the mid-frame that the masked area is filled with the KNN algorithm.

A.3. Quantitative comparison on foreground object removal

Table S2 compares the Video-based Fréchet Inception Distance (VFID) [7] and temporal warping error [2] on the
DAVIS [6] dataset in foreground object removal setting. Note that for the object removal task, we cannot provide
the evaluation results in terms of PSNR and SSIM and the statistics of video including the unwanted objects is
used to compute the VFID value due the lack of ground truth dataset for this task. The results indicate that our
method generates temporally more consistent video against the baseline methods while retaining the visual quality.

Method VFID, Eyarp(%),

E2FGVI [3] 0.783  0.1143
FuseFormer [1] | 0.782 0.1236
SAVIT-KNN 0.781 0.0628

Table S2. Perceptual quality and temporal consistency of transformer-based video inpainting models in foreground object
removal task.

B. Additional Experimental Results
B.1. More qualitative results

This section provides additional visual comparisons of SAVIT against baseline video inpainting methods on
YouTube-VOS [8] and DAVIS [6] datasets for fixed region inpainting and foreground object removal tasks. In
Fig. S1-S2, we compare SAVIT with existing transformer-based video inpainting networks, including STTN [9],
E2FVGI [3], and FuseFormer [4], under fixed region inpainting task. The inpainted results indicate the superiority
of our method in hallucinating more visually plausible images. Moreover, Fig. S3-S6 show comparisons of SAVIT
against our main baseline architecture, FuseFormer [4], along with the corresponding input segmentation maps on
both fixed region inpainting and foreground object removal settings. Under both settings, our SAVIT consistently
synthesizes more visually pleasing content (please see results on human body and object boundaries).
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Figure S1. Qualitative comparison of SAVIT against baseline video inpainting networks on DAVIS [6] in fixed region
inpainting setting.
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Figure S2. Qualitative comparison of SAVIT against baseline video inpainting networks on YouTube-VOS [8] in fixed region
inpainting setting.
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Figure S3. Input segmentation maps and qualitative results of SAVIT in comparison with FuseFormer [4] in fixed region
inpainting setting.
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Figure S4. Input segmentation maps and qualitative results of SAVIT in comparison with FuseFormer [1] in foreground
object removal setting.
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Figure S5. Input segmentation maps and qualitative results of SAVIT in comparison with FuseFormer [1] in foreground
object removal setting.
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Figure S6. Input segmentation maps and qualitative results of SAVIT in comparison with FuseFormer [1] in foreground
object removal setting.



C. Additional ablation study

C.1. Computational cost

f#experts #param FLOP PSNR'

1 (FuseFormerg,,.;;) 18.86M 290G 30.51

4 (+ Ours) 21.95M 305G 30.83
8 (+ Ours) 25.9T™™M 320G 31.01
132 (w/o super-cat)  151.0M 778G -

Table S3. Computational cost.

Table S3 outlines the computational cost of our method with FuseFormers,,.; as a backbone. First, when
comparing the first and second rows, our model effectively enhances the baseline performance by 0.3dB, while only
increasing the parameters by approximately 15% and the FLOPs by 5%. Comparing the first and third rows reveals
that our model significantly improves the performance (4+0.5dB), with only a 10% increase in FLOPs. Notably,
without our super-categorization, the model would require substantial resources (fourth row). However, we have
significantly reduced the cost by using the effective super-categorization.

C.2. Dynamic block replacement

Placement | PSNR"T SSIM" LPIPS; VFID,

first 31.05  0.9615  0.0465 0.166
mid 31.01  0.9624  0.0408 0.157
last 30.91  0.9616  0.0437 0.157

Table S4. Dynamic block placement.

Table S4 compares various configurations that replace the original block with our dynamic block. We observe
that the specific placement of our dynamic block does not yield a significant performance difference. Thus, we
have chosen to place the block in the middle, and focus on demonstrating the effectiveness of leveraging semantic
cues.
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